19.已知直線l:y=-2,定點(diǎn)F(0,2),P是直線$x-y+2\sqrt{2}=0$上的動(dòng)點(diǎn),若經(jīng)過點(diǎn)F,P的圓與l相切,則這個(gè)圓面積的最小值為4π.

分析 由題意知,圓心圓心在以點(diǎn)F為焦點(diǎn)、以直線l為準(zhǔn)線的拋物線上,此拋物線方程為 x2=8y,拋物線上只有點(diǎn)(0,0)到直線l的距離最小為2,故圓心為(0,0)時(shí),圓的半徑最。

解答 解:由題意知,圓心到點(diǎn)F的距離等于半徑,圓心到直線l:y=-2的距離也等于半徑,
圓心在以點(diǎn)F為焦點(diǎn)、以直線l為準(zhǔn)線的拋物線上,此拋物線方程為 x2=8y.
要使圓的面積最小,只有半徑(圓心到直線l的距離)最小,因?yàn)閽佄锞上只有點(diǎn)(0,0)到直線l的距離最小為2,
故圓的面積的最小值是 π×22=4π,
故答案為:4π

點(diǎn)評(píng) 本題考查拋物線的定義和標(biāo)準(zhǔn)方程,圓的面積最小的條件是圓的半徑最。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=2|$\overrightarrow b$|≠0,且函數(shù)在f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}$$+(\overrightarrow a•\overrightarrow b)x$在R上有極值,則向量$\overrightarrow a$,$\overrightarrow b$的夾角的取值范圍是($\frac{π}{3}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)y=$\frac{1}{2}$cos2x+$\frac{{\sqrt{3}}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求函數(shù)的最大值,最小值以及取得最大最小值時(shí)的x的取值;
(3)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過三棱錐高的中點(diǎn)做平行底面的截面,則截面與底面的面積之比為1:4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦點(diǎn),點(diǎn)P在橢圓上,若△POF2是面積為$\sqrt{3}$的正三角形,則橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=x2+(2-k)x+1在[-2,2]上是單調(diào)函數(shù),則k的取值范圍為(-∞,-2]∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=x2-2x+1在閉區(qū)間[0,3]上的最大值和最小值之和為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對于拋物線C:x2=4y,我們稱滿足$x_0^2<4{y_0}$的點(diǎn)M(x0,y0)在拋物線的內(nèi)部,則直線l:x0x=2(y+y0)與拋物線C公共點(diǎn)的個(gè)數(shù)是(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)滿足f(x)=f(π-x),且當(dāng)x∈(-$\frac{π}{2}$,$\frac{π}{2}$)時(shí),f(x)=ex+sinx,則( 。
A.$f(\frac{π}{3})<f(\frac{π}{4})<f(\frac{5π}{6})$B.$f(\frac{π}{4})<f(\frac{π}{3})<f(\frac{5π}{6})$C.$f(\frac{π}{4})<f(\frac{5π}{6})<f(\frac{π}{3})$D.$f(\frac{5π}{6})<f(\frac{π}{4})<f(\frac{π}{3})$

查看答案和解析>>

同步練習(xí)冊答案