有下列命題:
①若非零向量
a
、
b
,滿足
a
b
=0,則一定有
a
b

②將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)的圖象;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|≥2,則-2<x<2”;
④方程
x
2
 
+y2
+Dx+Ey+F=0表示圓的充要條件是
D
2
 
+E2
-4F≥0;
⑤對(duì)于命題p:?x∈R.使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
其中假命題的序號(hào)是
③④
③④
分析:①據(jù)課本必修4中的結(jié)論:非零向量
a
b
,若
a
b
=0,則一定有
a
b

②據(jù)平移變換的法則:“左加右減”可知,將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=cos[2(x-
π
3
)]
,再據(jù)誘導(dǎo)公式可進(jìn)一步化出其表達(dá)式.
③命題“若p,則q”的否命題是“若¬p,則¬q”.據(jù)此可以判斷出③的真假.
④將方程
x
2
 
+y2
+Dx+Ey+F=0配方化為(x+
D
2
)2+(y+
E
2
)2=
D2+E2-4F
4
,可以判斷出④的真假.
⑤對(duì)于命題:“?x∈R,結(jié)論p成立”,則命題的否定是:“?x∈R,結(jié)論p的反面成立”據(jù)此可判斷出其真假.
解答:解:①非零向量
a
b
=0,則一定有
a
b

②將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=cos[2(x-
π
3
)]
=cos(2x-
3
)
=cos(
3
-2x)
=cos[
π
2
-(2x-
π
6
)]
=sin(2x-
π
6

的圖象,故②正確.
③命題“若|x|≥2,則x≥2或x≤-2”的否命題應(yīng)是“若|x|<2,則-2<x<2”,故③不正確.
④∵方程
x
2
 
+y2
+Dx+Ey+F=0⇒(x+
D
2
)2+(y+
E
2
)2=
D2+E2-4F
4
,
∴只有當(dāng)
D
2
 
+E2
-4F>0時(shí),方程
x
2
 
+y2
+Dx+Ey+F=0才表示一個(gè)圓,
因此④不正確.
⑤據(jù)命題:“?x∈R,結(jié)論p成立”,則命題的否定是:“?x∈R,結(jié)論p的反面成立”,
可知“命題p:?x∈R.使得x2+x+<0,則¬p:?x∈R,均有x2+x+1≥0”正確.
故答案為③④.
點(diǎn)評(píng):本題綜合考查了向量的數(shù)量積與垂直的關(guān)系、三角函數(shù)圖象的變換與誘導(dǎo)公式、四種命題間的關(guān)系、圓的方程及命題的否定,解決問題的關(guān)鍵是掌握好有關(guān)基礎(chǔ)知識(shí)及判斷方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中,真命題的個(gè)數(shù)為( 。
①兩個(gè)有公共起點(diǎn)且相等的向量,其終點(diǎn)可能不同;②若非零向量
AB
CD
是共線向量,則A、B、C、D四點(diǎn)共線;③若
a
b
b
c
,則
a
c
;④四邊形ABCD為平行四邊形的充要條件是
AB
DC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•鹽城一模)現(xiàn)有下列命題:
①命題“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤-1},則A∩(?RB)=A;
③函數(shù)f(x)=sin(ωx+?)(ω>0)是偶函數(shù)的充要條件是?=kπ+
π
2
(k∈Z)
;
④若非零向量
a
,
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
b
與(
a
-
b
)
的夾角為60°.
其中正確命題的序號(hào)有
②③
②③
.(寫出所有你認(rèn)為真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省新鄉(xiāng)市衛(wèi)輝一中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

有下列命題:
①若非零向量,滿足=0,則一定有;
②將函數(shù)y=cos2x的圖象向右平移個(gè)單位,得到函數(shù)y=sin(2x-)的圖象;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|≥2,則-2<x<2”;
④方程+Dx+Ey+F=0表示圓的充要條件是-4F≥0;
⑤對(duì)于命題p:?x∈R.使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
其中假命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省新鄉(xiāng)市衛(wèi)輝一中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

有下列命題:
①若非零向量,滿足=0,則一定有;
②將函數(shù)y=cos2x的圖象向右平移個(gè)單位,得到函數(shù)y=sin(2x-)的圖象;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|≥2,則-2<x<2”;
④方程+Dx+Ey+F=0表示圓的充要條件是-4F≥0;
⑤對(duì)于命題p:?x∈R.使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
其中假命題的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案