已知等差數(shù)列{an}滿足a2=3,a3+a4=12.
(1)求{an}的通項公式;
(2)設(shè)bn=2an+1,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列的通項公式能求出a1=1,d=2,由此能求出an=2n-1.n∈N*
(2)由題意知bn=2an+1=22n=4n,由此能求出數(shù)列{bn}的前n項和Tn
解答: 解:(1)設(shè)等差數(shù)列{an}的公差為d,
由題意知
a1+d=3
a1+2d+a1+3d=12

解得a1=1,d=2,
∴an=2n-1.n∈N*
(2)由題意知bn=2an+1=22n=4n,
∴Tn=
4(1-4n)
1-4
=
4
3
(4n-1).
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,是中檔題,解題時要注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U為實數(shù)集,集合A={x|x2-2x-3<0},B={x|y=ln(1-x)},則圖中陰影部分表示的集合為(  )
A、{x|1≤x<3}
B、{x|x<3}
C、{x|x≤-1}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:3x-(k+2)y+6=0與直線l2:kx+(2k-3)y+2=0,記
D=
.
3-(k+2)
k2k-3
.
.D=0是兩條直線l1與直線l2平行的(  )
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有50名學(xué)生,某次數(shù)學(xué)考試成績平均分為70分,標(biāo)準(zhǔn)差為s;后來發(fā)現(xiàn)記錄有誤,甲同學(xué)得70分誤記為40分,乙同學(xué)得50分誤記為80分,更正后重新計算的標(biāo)準(zhǔn)差為S1,則S與S1的大小關(guān)系為( 。
A、S>S1
B、S<S1
C、S=S1
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科實驗做)已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(2,5),g(x)=(x+a)f(x).
(1)若曲線y=g(x)有平行于x軸的切線,求a的取值范圍;
(2)若當(dāng)x=-1,y=g(x)取得極值,且g(x)-k=0在[-2,-
1
2
]上有兩個根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,0),
b
=(1,1),
c
=(-1,0),求λ和μ,使
c
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為三角形的一個內(nèi)角,且
1
2
cosα
+
3
2
sinα
=
1
2
,則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={0,1,2},N={x|x⊆M},則集合M、N的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=4x2,過焦點的直線交拋物線于A(x1,y1),B(x2,y2),則y1y2=
 

查看答案和解析>>

同步練習(xí)冊答案