二項(xiàng)式(x-
1
2
4展開式中常數(shù)項(xiàng)為
 
.(用數(shù)字作答)
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)二項(xiàng)式(x-
1
2
4展開式的通項(xiàng)公式,求出r的值,再求展開式中常數(shù)項(xiàng)即可.
解答: 解:二項(xiàng)式(x-
1
2
4展開式的通項(xiàng)為
Tr+1=
C
r
4
•x4-r(-
1
2
)
r
,
令4-r=0,
解得r=4;
∴展開式中常數(shù)項(xiàng)為T4+1=
C
4
4
(-
1
2
)
4
=
1
16

故答案為:
1
16
點(diǎn)評(píng):本題考查了二項(xiàng)式展開式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角△ABC,∠A=90°,BC=2AB,AH⊥BC,BH=1,點(diǎn)M在AH上,且AH=3AM,則
BM
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-2<x≤5},B={x|-m+1≤x≤2m-1}且B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+φ)在區(qū)間[
π
3
,
6
]上單調(diào)遞減,則實(shí)數(shù)φ的取值可以是(  )
A、-
π
6
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,A、B分別是單位圓與x軸、y軸正半軸的交點(diǎn),點(diǎn)P在單位圓上,∠AOP=θ(0<θ<π),點(diǎn)C坐標(biāo)為(-2,0),平行四邊形OAQP的面積為S.
(1)求t=
OA
OQ
+S
的最大值;
(2)若CB∥OP,求sin(2θ-
π
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=1的等比數(shù)列,其前n項(xiàng)和Sn中,S3,S4,S2成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<a<1,則不等式a2x-7>a4x-2的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)經(jīng)過(guò)點(diǎn)(2,4),其導(dǎo)函數(shù)經(jīng)過(guò)點(diǎn)(0,-5)和(2,-1),當(dāng)x屬于(n,n+1](n屬于正整數(shù)),f(x)值是整數(shù)的個(gè)數(shù)記為an.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x1>x2>x3>0,則a
log2(2x1+2)
x1
,b=
log2(2x2+2)
x2
,c=
log2(2x3+2)
x3
的大小關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案