4.設(shè)函數(shù)f(x)=xlnx+2x,若f′(x0)=5,則x0的值為( 。
A.e2B.eC.ln2D.-ln2

分析 求導(dǎo),構(gòu)造關(guān)于x0的方程,解方程可得x0的值.

解答 解:∵函數(shù)f(x)=xlnx+2x,
∴f′(x)=lnx+3,
∴f′(x0)=lnx0+3=5,
解得:x0=e2,
故選:A

點評 本題考查的知識點是利用導(dǎo)數(shù)求解方程,導(dǎo)數(shù)的運算,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期.
(2)若x∈[-$\frac{π}{2}$,0],求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,則輸出結(jié)果S=(  )
A.$\frac{5}{4}$B.$\frac{21}{16}$C.$\frac{63}{32}$D.$\frac{85}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={y|y=2x,x∈R},B={y|y=x2,x∈R},則( 。
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)α,β為互不重合的平面,m,n為互不重合的直線,給出下列四個命題:
①若m⊥n,n是平面α內(nèi)任意的直線,則m⊥α;
②若α⊥β,α∩β=m,n?α,n⊥m則n⊥β;
③若α∩β=m,n?α,n⊥m,則α⊥β;
④若m⊥α,α⊥β,m∥n,則n∥β.
其中正確命題的序號為①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直三棱柱ABC-A1B1C1中,若BC⊥AC,$∠A=\frac{π}{3}$,AC=4,AA1=4,M為AA1的中點,P為BM的中點,Q在線段CA1上,A1Q=3QC.則異面直線PQ與AC所成角的正弦值為( 。
A.$\frac{{\sqrt{39}}}{13}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}滿足a3=3,a5=9;數(shù)列{bn}的前n項和為Sn,且滿足$_{1}=1,_{2}=3,{S}_{n+1}=4{S}_{n}-3{S}_{n-1}(n≥2,n∈{N}^{*})$.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若對任意的$n∈{N}^{*},({S}_{n}+\frac{1}{2})?k≥{a}_{n}$恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點F(-c,0)(c>0)是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左焦點,過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點P,且點P在拋物線y2=4cx上,則該雙曲線的離心率是(  )
A.$\frac{{3+\sqrt{5}}}{2}$B.$\sqrt{\frac{{\sqrt{5}+1}}{2}}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{3^x}-1,x≤1}\\{f(x-1),x>1}\end{array}}\right.$,則f(f(2))=2,函數(shù)f(x)的零點有1個.

查看答案和解析>>

同步練習(xí)冊答案