【題目】已知函數(shù)(其中),.它的最小正周期為,,且的最大值為2

1)求的解析式;

2)寫(xiě)出函數(shù)的單調(diào)遞減區(qū)間、對(duì)稱軸和對(duì)稱中心.

【答案】1;(2)遞減區(qū)間;對(duì)稱軸為直線;對(duì)稱中心

【解析】

1)先把函數(shù)化為的形式,則周期,最大值為,再與所給函數(shù)的周期,最大值比較,就可得到兩個(gè)含,,的等式,根據(jù)再得到一個(gè)含,的等式,就可求出,的值,得到的表達(dá)式.

2)由(1)中得到的函數(shù)的解析式,先化簡(jiǎn)為,把看成一個(gè)整體,就可借助基本正弦函數(shù)的單調(diào)性,對(duì)稱軸,對(duì)稱中心,求出的單調(diào)遞增區(qū)間、對(duì)稱中心、對(duì)稱軸方程.

解:(1,其中為輔助角,且,

,

,,即

的最大值為2,,解得,

所以

2)由(1)得,

,,解得,

函數(shù)的單調(diào)遞減區(qū)間

,,解得

函數(shù)的對(duì)稱中心為;

,解得,

對(duì)稱軸方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|xa|,a<0.

(1)證明:f(x)+f≥2;

(2)若不等式f(x)+f(2x)<的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了弘揚(yáng)民族文化,某中學(xué)舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了60名學(xué)生的成績(jī)(滿分100分)作為樣本,其中成績(jī)不低于80分的學(xué)生被評(píng)為優(yōu)秀生,得到成績(jī)分布的頻率分布直方圖如圖所示.

(1)若該所中學(xué)共有2000名學(xué)生,試?yán)脴颖竟烙?jì)全校這次考試中優(yōu)秀生人數(shù);

(2)(i)試估計(jì)這次參加考試的學(xué)生的平均成績(jī)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(ii)若在樣本中,利用分層抽樣的方法從成績(jī)不低于70分的學(xué)生中隨機(jī)抽取6人,再?gòu)闹谐槿?人贈(zèng)送一套國(guó)學(xué)經(jīng)典學(xué)籍,試求恰好抽中2名優(yōu)秀生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,橢圓的方程為(為參數(shù));以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(1)求橢圓的極坐標(biāo)方程,及圓的直角坐標(biāo)方程;

(2)若動(dòng)點(diǎn)在橢圓上,動(dòng)點(diǎn)在圓上,求的最大值;

(3)若射線分別與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中邊長(zhǎng)AB為2,P為正方形A1B1C1D1四邊上的動(dòng)點(diǎn),O為底面正方形ABCD的中心,Q為正方形ABCD內(nèi)一點(diǎn),M,N分別為AB,BC上靠近A和C的三等分點(diǎn),若線段與OP相交且互相平分,則點(diǎn)Q的軌跡與線段MN形成的封閉圖形的面積為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓.

1)若直線過(guò)點(diǎn)且到圓心的距離為,求直線的方程;

2)設(shè)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球比賽采用7局4勝制,即若有一隊(duì)先勝4局,則此隊(duì)獲勝,比賽就此結(jié)束.由于參加比賽的兩隊(duì)實(shí)力相當(dāng),每局比賽兩隊(duì)獲勝的可能性均為.據(jù)以往資料統(tǒng)計(jì),第一局比賽組織者可獲得門(mén)票收入40萬(wàn)元,以后每局比賽門(mén)票收入比上一局增加10萬(wàn)元,則組織者在此次比賽中獲得的門(mén)票收入不少于390萬(wàn)元的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于,兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,平面 為等腰直角三角形,,的中點(diǎn),的中點(diǎn).

(1)求異面直線所成角的余弦值;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案