20.已知平面向量$\overrightarrow{a}$=(2cos2x,sin2x),$\overrightarrow$=(cos2x,-2sin2x),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,要得到y(tǒng)=$\sqrt{3}$sin2x+cos2x的圖象,只需要將函數(shù)y=f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

分析 利用兩個向量的數(shù)量積公式,三角恒等變換,化簡函數(shù)f(x)的解析式,再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=2cos2x•cos2x-2sin2x•sin2x
=2(cos2x+sin2x)•(cos2x-sin2x)=2cos2x=2sin(2x+$\frac{π}{2}$)=2sin2(x+$\frac{π}{4}$),
∴要得到y(tǒng)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$)=2sin2(x+$\frac{π}{12}$)的圖象,
只需要將函數(shù)y=f(x)=2sin(2x+$\frac{π}{2}$)的圖象向右平移$\frac{π}{4}$-$\frac{π}{12}$=$\frac{π}{6}$個單位即可,
故選:B.

點評 本題主要考查兩個向量的數(shù)量積公式,三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.函數(shù)f(x)=x2+bx-1(b∈R).
(Ⅰ)若函數(shù)y=f(x)在[1,+∞)上單調(diào),求b的取值范圍;
(Ⅱ)若函數(shù)y=|f(x)|-2有四個零點,求b的取值范圍;
(Ⅲ)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)a=20.01,b=ln$\frac{7}{3}$,c=log3$\frac{11}{12}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>c>aC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≤2015}\\{f(x-5),x>2015}\end{array}\right.$,則f(2019)=2016.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某校高一學生共有500人,為了了解學生的歷史學習情況,隨機抽取了50名學生,對他們一年來4次考試的歷史平均成績進行統(tǒng)計,得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點值(例如區(qū)間[70,80)的中點值是
75作為代表),試估計該校高一學生歷史成績的眾數(shù),中位數(shù)和平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果A={x|x2+x=0},那么( 。
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=x2-4x+3,若f(x)≥mx對任意的實數(shù)x≥2都成立,則實數(shù)m的取值范圍是( 。
A.[-2$\sqrt{3}$-4,-2$\sqrt{3}$+4]B.(-∞,-2$\sqrt{3}$-4]∪[-2$\sqrt{3}$+4,+∞)
C.[-2$\sqrt{3}$+4,+∞)D.(-∞,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知斜率為1的直線l與拋物線y2=2px(p>0)交于位于x軸上方的不同兩點A,B,記直線OA,OB的斜率分別為K1,K2,則K1+K2的取值范圍是(4,+∞).

查看答案和解析>>

同步練習冊答案