(2013•哈爾濱一模)選修4-5:不等式選講
已知函數(shù)f(x)=log2(|x-1|+|x-5|-a)
(Ⅰ)當a=5時,求函數(shù)f(x)的定義域;
(Ⅱ)當函數(shù)f(x)的定義域為R時,求實數(shù)a的取值范圍.
分析:(1)a=5時,表達式中對數(shù)的真數(shù)大于0,即|x-1|+|x-5|-5>0,分情況討論不等式的解集,最后取并集即可得到函數(shù)f(x)的定義域.
(2)函數(shù)f(x)的定義域為R,即不等式|x-1|+|x-5|>a恒成立,根據(jù)絕對值不等式的性質(zhì)求出左邊的最小值,即可得到實數(shù)a的取值范圍.
解答:解:(Ⅰ)當a=5時,要使函數(shù)f(x)有意義,
即不等式|x-1|+|x-5|-5>0成立,------------------①
①當x≤1時,不等式①等價于-2x+1>0,解之得x
1
2
;
②當1<x≤5時,不等式①等價于-1>0,無實數(shù)解;
③當x>5時,不等式①等價于2x-11>0,解之得x
11
2

綜上所述,函數(shù)f(x)的定義域為(-∞,
1
2
)∪(
11
2
,+∞).
(Ⅱ)∵函數(shù)f(x)的定義域為R,
∴不等式|x-1|+|x-5|-a>0恒成立,
∴只要a<(|x-1|+|x-5|)min即可,
又∵|x-1|+|x-5|≥|(x-1)+(x-5)|=4,(當且僅當1≤x≤5時取等號)
∴a<(|x-1|+|x-5|)min即a<4,可得實數(shù)a的取值范圍是(-∞,4).
點評:本題給出含有絕對值的對數(shù)形式的函數(shù),求函數(shù)的定義域并討論不等式恒成立.著重考查了函數(shù)的定義域及其求法和絕對值不等式的解法與性質(zhì)等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•哈爾濱一模)正三角形ABC的邊長為2,將它沿高AD翻折,使點B與點C間的距離為1,此時四面體ABCD外接球表面積為
13
3
π
13
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•哈爾濱一模)已知函數(shù)f(x)=lnx,g(x)=ex
( I)若函數(shù)φ(x)=f(x)-
x+1x-1
,求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)的圖象上一點A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•哈爾濱一模)已知函數(shù)①y=sinx+cosx,②y=2
2
sinxcosx
,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•哈爾濱一模)雙曲線
x2
a2
-
y2
b2
=1
的漸近線與圓x2+(y-2)2=1相切,則雙曲線離心率為( 。

查看答案和解析>>

同步練習冊答案