【題目】已知集合A={x|1<x<6},B={x|2<x<10},C={x|5﹣a<x<a}.
(1)求A∪B,(RA)∩B;
(2)若CB,求實(shí)數(shù)a的取值范圍.
【答案】(1)A∪B={x|1<x<10},(RA)∩B={x|6≤x<10} ;(2).
【解析】
(1)進(jìn)行并集、交集和補(bǔ)集的運(yùn)算即可;
(2)根據(jù)CB,可討論C是否為空集:C=時(shí),5﹣a≥a;C≠時(shí),,這樣即可得出實(shí)數(shù)a的取值范圍.
(1)∵A={x|1<x<6},B={x|2<x<10},
A∪B={x|1<x<10},RA={x|x≤1,或x≥6};
∴(RA)∩B={x|6≤x<10};
(2)∵CB;
①C=時(shí),5﹣a≥a;
∴;
②C≠時(shí),則;
解得;
綜上得,a≤3;
∴a的取值范圍是(﹣∞,3].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π
(1)求ω的值;
(2)求f(x)的單調(diào)增區(qū)間
(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市組織的一次數(shù)學(xué)競(jìng)賽中全體參賽學(xué)生的成績(jī)近似服從正態(tài)分布N(60,100),已知成績(jī)?cè)?0分以上的學(xué)生有13人.
(1)求此次參加競(jìng)賽的學(xué)生總數(shù)共有多少人?
(2)若計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)排在前228名的學(xué)生,問(wèn)受獎(jiǎng)學(xué)生的分?jǐn)?shù)線是多少?
(參考數(shù)據(jù):若,則;;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(為常數(shù)).
(1)當(dāng)時(shí),判斷在的單調(diào)性,并用定義證明;
(2)若對(duì)任意,不等式恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y)且當(dāng)x>0,f(x)<0.
給出下列四個(gè)結(jié)論:
①f(0)=0; ②f(x)為偶函數(shù);
③f(x)為R上減函數(shù); ④f(x)為R上增函數(shù).
其中正確的結(jié)論是( )
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 =1(a>b>0)的左焦點(diǎn)為F,離心率為 ,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為 .
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左,右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若 =8,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的t>0,存在唯一的s,使t=f(s).
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時(shí),有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
由散點(diǎn)圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計(jì)算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
最小二乘法求線性回歸方程系數(shù)公式
(Ⅰ)根據(jù)以上信息,建立關(guān)于的回歸方程;
(Ⅱ)已知這種產(chǎn)品的年利潤(rùn)與的關(guān)系為.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com