定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)數(shù),若f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.現(xiàn)已知f(x)=x3-3x2+2x-2,則函數(shù)y=f(x)的“拐點(diǎn)”A的坐標(biāo)為( 。
A、(-1,-8)
B、(0,-2)
C、(1,-2)
D、(2,-10)
考點(diǎn):導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)定義,連續(xù)求兩次導(dǎo)數(shù)即可得到結(jié)論.
解答: 解:∵(x)=x3-3x2+2x-2,
∴f′(x)=3x2-6x+2,
f″(x)=6x-6,
由f″(x)=6x-6=0,解得x=1,此時(shí)f(1)=1-3+2-2=-2,
即A(1,-2),
故選:C
點(diǎn)評(píng):本題主要考查與導(dǎo)數(shù)有關(guān)的新定義,考查導(dǎo)數(shù)的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y1=40.9,y2=2log52,y3=(
1
2
)
-1.5
,則( 。
A、y3>y2>y1
B、y1>y2>y3
C、y1>y3>y2
D、y2>y1>y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x+2
+a,x≤0
f(x-1)+1,x>0
,若對(duì)任意的a∈(-3,+∞),關(guān)于x的方程f(x)=kx都有3個(gè)不同的根,則k等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(1,-2),
b
=(-3,6),則(  )
A、
a
b
B、
a
b
C、
a
b
的夾角為60°
D、
a
b
的夾角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log4(x2-1),則f(3)=( 。
A、2
B、3
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中為冪函數(shù)且為偶函數(shù)的是( 。
A、f(x)=x2
B、f(x)=3x
C、f(x)=(1-x)2
D、f(x)=x 
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是( 。
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖的算法流程圖的輸出結(jié)果是( 。
A、5B、7C、9D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

每年5月17日為國(guó)際電信日,某市電信公司在電信日當(dāng)天對(duì)辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.電信日當(dāng)天參與活動(dòng)的人數(shù)統(tǒng)計(jì)結(jié)果如圖所示,現(xiàn)將頻率視為概率.
(1)求某人獲得優(yōu)惠金額不低于300元的概率;
(2)若采用分層抽樣的方式從參加活動(dòng)的客戶中選出6人,再?gòu)脑?人中隨機(jī)選出兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案