學(xué)校文娛隊的每位隊員唱歌、跳舞至少會一項,已知會唱歌的有人,會跳舞的有人,現(xiàn)從中選人.設(shè)為選出的人中既會唱歌又會跳舞的人數(shù),且的概率

(1)求文娛隊的人數(shù);

(2)從文娛隊中選出人排練一個由人唱歌人跳舞的節(jié)目,有多少種挑選演員的方法?

解:(1)設(shè)文娛隊共有,則其中只會唱歌的有人,只會跳舞的有人,既會唱歌又會跳舞的有人.

,

,則,

此時,,

即  , 整理,得

解方程,得,或(舍)

所以,文娛隊共人.

(2)由題意知,文娛隊中只會唱歌的有人,只會跳舞的有人,既會唱歌又會跳舞的有人.故不同的選法共有種.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校文娛隊的每位隊員唱歌、跳舞至少會一項,已知會唱歌的有2人,會跳舞的有5人,現(xiàn)從中選2人.設(shè)ξ為選出的人中既會唱歌又會跳舞的人數(shù),且P(ξ>0)=
7
10
,則文娛隊的人數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校文娛隊的每位隊員唱歌、跳舞至少會一項,已知會唱歌的有2人,會跳舞的有5人,從中選2人,設(shè)ξ為選出的人中既會唱歌又會跳舞的人數(shù),P(ξ>0)=
710
,則文娛隊的人數(shù)為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校文娛隊的每位隊員唱歌、跳舞至少會一項,已知會唱歌的有3人,會跳舞的有5人,現(xiàn)從中選2人.設(shè)X為選出的人中既會唱歌又會跳舞的人數(shù),且X>0的概率P(X>0)=
35

(1)求文娛隊的人數(shù);
(2)從文娛隊中選出3人排練一個由1人唱歌2人跳舞的節(jié)目,有多少種挑選演員的方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)學(xué)校文娛隊的每位隊員唱歌、跳舞至少會一項,已知會唱歌的有2人,會跳舞的有5人,現(xiàn)從中選2人.設(shè)ξ為選出的人中既會唱歌又會跳舞的人數(shù),且P(ξ>0)=
710

(1)求文娛隊的隊員人數(shù);
(2)寫出ξ的概率分布列并計算E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校文娛隊的每位隊員唱歌、跳舞至少會一項,已知會唱歌的有2人,會跳舞的有5人,現(xiàn)從中選2人.設(shè)ξ為選出的人中既會唱歌又會跳舞的人數(shù),且P(ξ>0)=.(Ⅰ)求文娛隊的人數(shù);(Ⅱ)寫出ξ的概率分布列并計算Eξ.

查看答案和解析>>

同步練習(xí)冊答案