分析 要求圓的方程,已知圓心坐標,關鍵是要求半徑,根據(jù)直線與圓相切得到圓心到直線的距離等于半徑,所以利用點到直線的距離公式求出圓心到直線3x-4y-7=0的距離即為圓的半徑,根據(jù)圓心坐標和求出的半徑寫出圓的方程即可.
解答 解:因為點N(1,3)到直線3x-4y-7=0的距離d=$\frac{|3-4×3-7|}{5}=\frac{16}{5}$,
由題意得圓的半徑r=d=$\frac{16}{5}$,
則所求的圓的方程為${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.
故答案為${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.
點評 此題考查學生掌握直線與圓相切時所滿足的條件是圓心到直線的距離等于半徑,靈活運用點到直線的距離公式化簡求值,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\frac{1}{3})$ | B. | (0,+∞) | C. | [$\frac{1}{3},+∞$) | D. | (-∞,0]∪[$\frac{1}{3},+∞$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=\sqrt{x^2}$與g(x)=x | B. | $f(x)={3^{{{log}_3}x}}$與g(x)=x | ||
C. | f(x)=2-x與$g(x)={({\frac{1}{2}})^x}$ | D. | f(x)=|x-3|與g(x)=x-3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | (1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 對正態(tài)分布密度函數(shù)$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-μ)}^2}}}{{2{σ^2}}}}},x∈R$的圖象,σ越大,曲線越“高瘦” | |
B. | 若隨機變量ξ的密度函數(shù)為$f(x)=\frac{1}{{2\sqrt{2π}}}{e^{-\frac{{{{(x-1)}^2}}}{8}}},x∈R$,則ξ的方差為2 | |
C. | 若隨機變量ξ~N(μ,σ2),則ξ落在區(qū)間(μ-3σ,μ+3σ)上的概率約為68.3% | |
D. | 若隨機變量ξ~N(0,1),則P(ξ>1.2)=1-P(ξ≤1.2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com