已知實(shí)數(shù)x,y滿足不等式組
x≥1
y≥0
x+y≤3
,則x+2y的最大值為( 。
A、3B、3C、4D、5
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答: 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2

平移直線y=-
1
2
x+
z
2
,由圖象可知當(dāng)直線y=-
1
2
x+
z
2
經(jīng)過點(diǎn)C時,直線y=-
1
2
x+
z
2
的截距最大,此時z最大.
x=1
x+y=3
,得
x=1
y=2
,
即C(1,2),
此時z的最大值為z=1+2×2=5,
故選:D
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)圖象的對稱軸間的距離最小值為
π
2
,若f(x)與y=cosx的圖象有一個橫坐標(biāo)為
π
3
的交點(diǎn),則φ的值是(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊a=2,b=2
2
,c=
6
-
2
,求∠A和sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程2x3-6x2+7=0在(-1,2)內(nèi)根的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若滿足不等式|x-
(a+1)2
2
|≤
(a-1)2
2
的x的值滿足不等式x2-3(a+1)x+2(3a+1)≤0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,討論關(guān)于x的方程|x2-6x+8|-a=0的實(shí)數(shù)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對數(shù)函數(shù)f(x)=logax(a>0且a≠1)的圖象過點(diǎn)(
1
8
,3)
(1)求f(x)的解析式,并求f(1),f(16),f(
2
)的值;
(2)已知f(x-1)>f(8-2x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列求導(dǎo)過程中(1)(
1
x
)′=-
1
x2
(2)(
x
)′=
1
2
x
(3)(logax)′=(
lnx
lna
)′=
1
xlna
(4)(ax)′=(exlna)′=exlnalna=axlna,其中正確的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集∪={x∈N*|x<9},A={1,2,3},B={3,4,5,6},求∁U(A∪B),∁U(A∩B),(∁UA)∪(∁UB),(∁UA)∩(∁UB),由上面的練習(xí),你能得出什么結(jié)論,請結(jié)合Venn圖進(jìn)行分析.

查看答案和解析>>

同步練習(xí)冊答案