5.已知函數(shù)f(x)=|x-10|+|x-20|,且滿足f(x)<10a+10(a∈R)的解集不是空集.
(1)求實數(shù)a的取值范圍;
(2)求$a+\frac{4}{a^2}$的最小值.

分析 (1)由題意,f(x)<10a+10解集不是空集,則有則(|x-10|+|x-20|)min<10a+10,從而求解a的范圍即可.
(2)由(1)可知a的范圍,利用基本不等式即可求最小值.

解答 解:(1)由題意,f(x)<10a+10解集不是空集,即|x-10|+|x-20|<10a+10,
則(|x-10|+|x-20|)min<10a+10成立,
解得:10<10a+10,
∴a>0,
故實數(shù)a的取值范圍是(0,+∞)
(2)由(1)可知a>0,
那么:求$a+\frac{4}{a^2}$=$\frac{a}{2}+\frac{a}{2}+\frac{4}{a^2}≥3\root{3}{{\frac{a}{2}•\frac{a}{2}•\frac{4}{a^2}}}=3$
當且僅當$\frac{a}{2}=\frac{4}{a^2}$,即a=2時取等號.
故$a+\frac{4}{a^2}$的最小值為3.

點評 本題考查了絕對值恒成立的問題和基本不等式的運用.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.閱讀下列命題:
①若點P(a,2a) (a≠0)為角α終邊上一點,則sin α=$\frac{2\sqrt{5}}{5}$;
②同時滿足sin α=$\frac{1}{2}$,cos α=$\frac{\sqrt{3}}{2}$的角有且只有一個;
③設(shè)tan α=$\frac{1}{2}$且π<α<$\frac{3π}{2}$,則sin α=-$\frac{\sqrt{5}}{5}$;
④函數(shù)y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函數(shù)
其中正確命題的序號是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知圓C的極坐標方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}}$)-4=0,則圓C的半徑為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知命題p1:函數(shù)y=2x-2-x在R上為增函數(shù),
p2:函數(shù)y=2x+2-x在R上為減函數(shù),則在命題
①p1∨p2②p1∧p2③(¬p1)∨p2④p1∧(¬p2)中真命題是①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設(shè)非負實數(shù)x,y滿足:$\left\{\begin{array}{l}y≥x-1\\ 2x+y≤5\end{array}\right.$,(2,1)是目標函數(shù)z=ax+3y(a>0)取最大值的最優(yōu)解,則a的取值范圍是[6,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知向量$\overrightarrow a=(-1,1)$,向量$\overrightarrow b=(3,t)$,若$\overrightarrow b∥(\overrightarrow a+\overrightarrow b)$,則t=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.為了得到函數(shù)$y=cos(2x-\frac{π}{3})$的圖象,只要將函數(shù)y=sin2x的圖象( 。
A.向右平移$\frac{π}{6}$個單位長度B.向左平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{π}{12}$個單位長度D.向左平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在△ABC中,角A,B,C的對邊長分別是a,b,c,且滿足(2b-c)cosA-acosC=0
(1)求角A的大小
(2)若a=$\sqrt{3}$,△ABC的面積S△ABC=$\frac{3\sqrt{3}}{4}$,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在等差數(shù)列{an}中,a4=12,則a1+a7=( 。
A.12B.24C.36D.48

查看答案和解析>>

同步練習冊答案