9.已知圓C的極坐標(biāo)方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}}$)-4=0,則圓C的半徑為$\sqrt{6}$.

分析 利用互化公式把極坐標(biāo)方程化為直角坐標(biāo)方程,配方即可得出半徑.

解答 解:圓C的極坐標(biāo)方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}}$)-4=0,展開可得:ρ2+2$\sqrt{2}$ρ×$\frac{\sqrt{2}}{2}$×(sinθ-cosθ)-4=0,
利用互化公式可得:x2+y2+2y-2x-4=0,
配方為:(x-1)2+(y+1)2=6,
則圓C的半徑為$\sqrt{6}$.
故答案為:$\sqrt{6}$.

點評 本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程,配方法、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x+$\frac{m}{x}$,且f(1)=5.
(1)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.
(2)若f(x)≥a對于x∈[4,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2011次操作后得到的數(shù)是( 。
A.25B.250C.55D.133

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|y=lg(4-x2)},B={x∈N|$\sqrt{x}$≤3},則A∩B=( 。
A.(0,2)B.[0,2)C.{0,1}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.等差數(shù)列{an}中,若a1+a2=5,a3+a4=7,則a5+a6=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$+φ),φ∈(0,π)滿足f(|x|)=f(x),則φ的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在矩形ABCD中,$AB=6,BC=2\sqrt{3}$,沿對角線BD將三角形ABD向上折起,使點A移至點P,且點P在平面BCD上的射影O在DC上,
(1)求證:BC⊥PD;
(2)若M為PC的中點,求二面角B-DM-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x-10|+|x-20|,且滿足f(x)<10a+10(a∈R)的解集不是空集.
(1)求實數(shù)a的取值范圍;
(2)求$a+\frac{4}{a^2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)$f(x)=\left\{\begin{array}{l}-cosπx,x>0\\ f(x+1)+1,x≤0\end{array}\right.$,則$f(-\frac{4}{3})$的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步練習(xí)冊答案