A. | $\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
分析 求導(dǎo),分類當(dāng)a≤0,無極值,a>0,根據(jù)函數(shù)的單調(diào)性求得當(dāng)x=$\sqrt{a}$時(shí),取極小值,即f($\sqrt{a}$)=a$\sqrt{a}$-3a$\sqrt{a}$+$\frac{1}{4}$=0,即可求得a的值.
解答 解:f(x)=x3-3ax+$\frac{1}{4}$,f′(x)=3x2-3a,
當(dāng)a≤0,f′(x)≥0,恒成立,函數(shù)y=f(x)無極值,
當(dāng)a>0,令f′(x)=0,解得:x=$\sqrt{a}$,
當(dāng)f′(x)>0,解得x>$\sqrt{a}$,
當(dāng)f′(x)<0,解得0<x<$\sqrt{a}$,
∴函數(shù)在(0,$\sqrt{a}$)單調(diào)遞減,在($\sqrt{a}$,+∞)單調(diào)遞增,
∴x=$\sqrt{a}$時(shí),取極小值,
∴f($\sqrt{a}$)=a$\sqrt{a}$-3a$\sqrt{a}$+$\frac{1}{4}$=0,解得:a=$\frac{1}{4}$,
故選:A.
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)(2) | B. | (2)(3) | C. | (3)(4) | D. | (4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com