13.由半徑為20cm的半圓面所圍成圓錐的高為$10\sqrt{3}$(cm).

分析 根據(jù)圓錐的母線長等于側面展開圖的半圓的半徑,由半圓弧長等于圓錐的底面周長求出圓錐的底面半徑,在由圓錐的高、底面半徑和母線圍成的直角三角形中利用勾股定理求圓錐的高.

解答 解:由題意可知,半圓的半徑是所圍成的圓錐的母線,
半圓的弧長為所圍成的圓錐的底面周長.
所以圓錐的母線長等于l=20cm,
設圓錐的底面半徑為r(cm),則2πr=$\frac{1}{2}×2π×20$
所以r=10(cm).
則圓錐的高為$\sqrt{400-100}$=10$\sqrt{3}$ (cm).
故答案為$10\sqrt{3}$.

點評 本題考查了圓錐的結構特征,考查了點、線、面間距離的計算,解答此題的關鍵是熟練掌握圓錐的母線長及底面周長與展開圖之間的關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,且2acos(π+C)+2b=c.
(1)求角A的大;
(2)若cos($\frac{3π}{2}$-C)+2sin(π-B)=0,且a=$\sqrt{3}$,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知離心率為$\frac{{2\sqrt{5}}}{5}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2(O為坐標原點)的中點分別為B1,B2,上頂點為A,且△AB1B2是腰長為2$\sqrt{2}$的等腰三角形.
(I)求橢圓C的標準方程;
(Ⅱ)過B1點作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)$f(x)=\frac{x-a}{x+1}{e^x}$,在定義域內(nèi)有極值點,則實數(shù)a的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.定義在R上的函數(shù)f(x)滿足$f(x+\frac{3}{2})=f(x-\frac{3}{2})$,f(x)+f(-x)=0且f(1)=0,求x∈[0,6]上至少有7個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.三棱錐P-ABC中,PA⊥平面ABC,BC⊥CA,AC=1,BC=2,PA=2,則該三棱錐外接球的表面積為(  )
A.B.36πC.$\frac{9}{2}π$D.$\frac{9}{4}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若扇形的半徑變?yōu)樵瓉淼?倍,而弧長也擴大到原來的3倍,則( 。
A.扇形的面積不變B.扇形的圓心角不變
C.扇形的面積擴大到原來的3倍D.扇形的圓心角擴大到原來的3倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知;a,b表示不同的直線,α,β表示不同的平面,現(xiàn)有下列命題:①$\left.\begin{array}{l}{a∥b}\\{a∥α}\end{array}\right\}$⇒b∥α,②$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b,③$\left.\begin{array}{l}{a⊥b}\\{α∥β}\end{array}\right\}$⇒a⊥α,④$\left.\begin{array}{l}{a∥α}\\{α∥β}\end{array}\right\}$⇒α∥β,其中真命題有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2-x+1)ex
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案