若某多面體的三視圖如圖所示,則此多面體外接球的表面積是( 。
A、6
B、
18+
14
4
C、12π
D、3π
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖可知:該幾何體是正方體的內(nèi)接正四面體.可得此多面體外接球的直徑是次正方體的對(duì)角線
3
.即可得出.
解答: 解:由三視圖可知:該幾何體是正方體的內(nèi)接正四面體(紅顏色).
∴此多面體外接球的直徑是此正方體的對(duì)角線
3

因此其球的表面積是4π(
3
2
)2
=3π.
故選:D.
點(diǎn)評(píng):本題考查了正方體的三視圖、球的表面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△RBC中,RB=BC=2,點(diǎn)A、D分別是RB、RC的中點(diǎn),且2BD=RC,邊AD折起到△PAD位置,使PA⊥AB,連結(jié)PB、PC.
(1)求證:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B為線段MN上一點(diǎn),|MN|=6,|BN|=2,過B作⊙C與MN相切,分別過M,N作⊙C的切線交于P點(diǎn),則P的軌跡是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(πx+φ)的部分圖象如圖所示,點(diǎn)B,C是該圖象與x軸的交點(diǎn),過點(diǎn)C的直線與該圖象交于D,E兩點(diǎn),則(
BD
+
BE
)•(
BE
-
CE
)
的值為(  )
A、-1
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、?x∈R,sinx+
1
sinx
≥2
B、?x∈R,
1
x2+1
>1
C、命題p:“?x∈R,x2-x-1>0”的否定¬p:“?x∈R,x2-x-1≤0”
D、“ea>eb”是“l(fā)og2a>log2b”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

自己不戴自己的帽子5人的不同分配方法有
 
種?自己不戴自己的帽子的通項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下面程序框圖,則輸出結(jié)果s的值為( 。
A、
1
2
B、
3
2
C、-
3
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足zi=1-i(i為虛數(shù)單位),則復(fù)數(shù)z等于(  )
A、1+iB、-1-i
C、1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩條直線的方程分別為x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的兩個(gè)實(shí)根,且0≤c≤
1
8
,則這兩條直線之間的距離的最大值和最小值分別是( 。
A、
2
2
,
1
2
B、
2
2
2
C、
2
1
2
D、
2
4
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案