【題目】(本小題滿分12分)

已知函數(shù),其中

)當,求曲線在點處的切線方程;

時,求函數(shù)的單調(diào)區(qū)間與極值.

【答案】

在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

函數(shù)處取得極大值,且

函數(shù)處取得極小值,且

【解析】)解:當時,,

,

所以,曲線在點處的切線方程為,

)解:

由于,以下分兩種情況討論.

(1)當時,令,得到,.當變化時,的變化情況如下表:

0

0

極小值

極大值

所以在區(qū)間內(nèi)為減函數(shù),在區(qū)間內(nèi)為增函數(shù).

函數(shù)處取得極小值,且

函數(shù)處取得極大值,且

(2)當時,令,得到,當變化時,的變化情況如下表:

0

0

極大值

極小值

所以在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

函數(shù)處取得極大值,且

函數(shù)處取得極小值,且

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】求經(jīng)過直線L13x + 4y – 5 = 0與直線L22x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程

1)與直線2x + y + 5 = 0平行 ;

2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

1)若上單調(diào)遞增,求正數(shù)的最大值;

2)若函數(shù)內(nèi)恰有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘畢達哥拉斯學派的數(shù)學家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10,…,第n個三角形數(shù)為 .記第n個k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個數(shù)的表達式:
三角形數(shù) ,
正方形數(shù)N(n,4)=n2 ,
五邊形數(shù)
六邊形數(shù)N(n,6)=2n2﹣n,

可以推測N(n,k)的表達式,由此計算N(10,24)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的焦點為,點是拋物線上一點,且

(1)求的值;

(2)若為拋物線上異于的兩點,且.記點到直線的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1=2,an1an=3·22n1.

(1)求數(shù)列{an}的通項公式;

(2)bnnan,求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求實數(shù)a的值;

(2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案