f(x)=x(1-x)2的極值點(diǎn)個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
【答案】分析:欲求極值個(gè)數(shù),即求函數(shù)的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù),故先求原函數(shù)的導(dǎo)數(shù),考慮它的根的情況.
解答:解:因f′(x)=3x2-4x+1=0,
解得x=1或
x∈(-∞,)時(shí),f′(x)>0
x∈(,1)時(shí),f′(x)<0
x∈(1,+∞)時(shí),f′(x)>0
f(x)=x(1-x)2的極值點(diǎn)個(gè)數(shù)為2
故選C.
點(diǎn)評(píng):本題主要考查函數(shù)的導(dǎo)數(shù)、極值等基礎(chǔ)知識(shí),以及問(wèn)題的轉(zhuǎn)化能力,同時(shí)考查邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)(x∈R)為奇函數(shù),且存在反函數(shù)f-1(x)(與f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,則下列關(guān)于函數(shù)F(x)的奇偶性的說(shuō)法中正確的是( 。
A、F(x)是奇函數(shù)非偶函數(shù)
B、F(x)是偶函數(shù)非奇函數(shù)
C、F(x)既是奇函數(shù)又是偶函數(shù)
D、F(x)既非奇函數(shù)又非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(1-x),g(x)=loga(1+x),其中a>0且a≠1.
(1)求函數(shù)f(x)+g(x)的定義域;
(2)判斷函數(shù)f(x)+g(x)的奇偶性,并證明;
(3)若f(x)>g(x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù)f(x)是奇函數(shù),當(dāng)x<0時(shí),f(x)的解析式是f(x)=x(1-x),則當(dāng)x>0時(shí),的解析式是


  1. A.
    f(x)=-x(1-x)
  2. B.
    f(x)=x(1-x)
  3. C.
    f(x)=-x(1+x)
  4. D.
    f(x)=x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案