設(shè)函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,)對稱,且存在反函數(shù)f-1(x),若f(3)=0,則f-1(3)等于( )
A.-1
B.1
C.-2
D.2
【答案】分析:由于函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,)對稱,故可得f(1+x)+f(1-x)=3,用此恒等式建立相關(guān)的方程即可解出f-1(3)的值.
解答:解:由函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,)對稱,可得 f(x+1)+f(1-x)=3,對任何x都成立,
在上式中,取x=2,
得到 f(3)+f(-1)=4,又f (3)=0
∴f(-1)=4,
∴f-1(4)=-1.
故選A.
點(diǎn)評:本題考查函數(shù)的對稱性與反函數(shù)的性質(zhì),知識性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1,x2滿足0<x1<x2
1
a

(1)當(dāng)x∈(0,x1)時,證明x<f (x)<x1;
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2
+bx(a≠0)
(Ⅰ)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx(a≠0)
(I)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(II)若a=2,b=1,若函數(shù)k=g(x)-2f(x)-x2在[1,3]上恰有兩個不同零點(diǎn),求實(shí)數(shù)k的取值范圍;
(III)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P,Q兩點(diǎn),過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于M、N兩點(diǎn),問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx

(1)當(dāng)a=b=
1
2
時,求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若b=2且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)當(dāng)a≠0時,設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M,N,則是否存在點(diǎn)R,使C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行?如果存在,請求出R的橫坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+x+b
(a≥0),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是y=3x-3,求a,b的值;
(Ⅱ)若函數(shù)g(x)=e-ax•f′(x),求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案