下列說(shuō)法錯(cuò)誤的是(  )
A、在統(tǒng)計(jì)里,從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本的容量
B、一組數(shù)據(jù)的平均數(shù)一定大于這組數(shù)據(jù)中的每個(gè)數(shù)據(jù)
C、平均數(shù)、眾數(shù)與中位數(shù)從不同的角度描述了一組數(shù)據(jù)的集中趨勢(shì)
D、一組數(shù)據(jù)的方差越大,說(shuō)明這組數(shù)據(jù)的波動(dòng)性越大
考點(diǎn):命題的真假判斷與應(yīng)用
專題:概率與統(tǒng)計(jì),簡(jiǎn)易邏輯
分析:直接利用統(tǒng)計(jì)學(xué)中的基本概念逐一核對(duì)四個(gè)選項(xiàng)得答案.
解答: 解:在統(tǒng)計(jì)里,從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本的容量,選項(xiàng)A正確;
一組數(shù)據(jù)的平均數(shù)不可能大于這組數(shù)據(jù)中的每個(gè)數(shù)據(jù),選項(xiàng)B錯(cuò)誤;
平均數(shù)、眾數(shù)與中位數(shù)從不同的角度描述了一組數(shù)據(jù)的集中趨勢(shì),選項(xiàng)C正確;
一組數(shù)據(jù)的方差越小,波動(dòng)性越小,說(shuō)明樣本穩(wěn)定性越好,一組數(shù)據(jù)的方差越大,說(shuō)明這組數(shù)據(jù)的波動(dòng)性越大,選項(xiàng)D正確,
故選:B.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了統(tǒng)計(jì)學(xué)中的基本概念,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
f′(x)
x
的圖象如圖所示(其中f′(x)是定義域?yàn)镽函數(shù)f(x)的導(dǎo)函數(shù)),則以下說(shuō)法錯(cuò)誤的是( 。
A、f′(1)=f′(-1)=0
B、當(dāng)x=-1時(shí),函數(shù)f(x)取得極大值
C、方程xf′(x)=0與f(x)=0均有三個(gè)實(shí)數(shù)根
D、當(dāng)x=1時(shí),函數(shù)f(x)取得極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
x2
2
+2a(a+1)1nx-(3a+1)x.
(1)若函數(shù)f(x)在x=l處的切線與直線y-3x=0平行,求a的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)a1=
1
3
,前n項(xiàng)和為Sn,滿足s1、2s2、3s3成等差數(shù)列;
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2-(
1
1+an
+
1
1-an+1
)),數(shù)列bn的前n項(xiàng)和為T(mén)n,求證:Tn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體三視圖如圖所示,其中正視圖和側(cè)視圖都是等腰梯形,且上底長(zhǎng)為2,下底長(zhǎng)為4,腰長(zhǎng)為
5
3
,則它的體積與表面積之比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上點(diǎn)到兩焦點(diǎn)的距離和為
2
3
,短軸長(zhǎng)為
1
2
,直線l與橢圓C交于M、N兩點(diǎn).
(Ⅰ)求橢圓C方程;
(Ⅱ)若直線MN與圓O:x2+y2=
1
25
相切,證明:∠MON為定值;
(Ⅲ)在(Ⅱ)的條件下,求|OM|•|ON|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,
AD
=
1
3
AC
,
BE
=
1
2
BC
,P是AE與BD的交點(diǎn),設(shè)
BP
=x
BA
+y
BC
,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x3+2x2-x(x∈R)
(1)求曲線y=f(x)在點(diǎn)(2,f(x))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,首項(xiàng)為a1,公差為d,前n項(xiàng)和為Sn,若數(shù)列{an}中任意不同兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列為“F數(shù)列”.
(1)若a1=4,d=2,判斷該數(shù)列是否為“F數(shù)列”.
(2)若a1,d∈N,是否存在這樣的“F數(shù)列”,使S10≤70?若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)試問(wèn):數(shù)列{an}為“F數(shù)列”的充要條件是什么?給出你的結(jié)論并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案