已知函數(shù)y=
f′(x)
x
的圖象如圖所示(其中f′(x)是定義域?yàn)镽函數(shù)f(x)的導(dǎo)函數(shù)),則以下說(shuō)法錯(cuò)誤的是( 。
A、f′(1)=f′(-1)=0
B、當(dāng)x=-1時(shí),函數(shù)f(x)取得極大值
C、方程xf′(x)=0與f(x)=0均有三個(gè)實(shí)數(shù)根
D、當(dāng)x=1時(shí),函數(shù)f(x)取得極小值
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的圖象,導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,分別進(jìn)行判斷即可.
解答: 解:A.由圖象可知x=1或-1時(shí),f′(1)=f′(-1)=0成立.
B.當(dāng)x<-1時(shí),
f′(x)
x
<0,此時(shí)f′(x)>0,當(dāng)-1<x<0時(shí),
f′(x)
x
>0,此時(shí)f′(x)<0,故當(dāng)x=-1時(shí),函數(shù)f(x)取得極大值,成立.
C.方程xf′(x)=0等價(jià)為x2
f′(x)
x
=0
,故xf′(x)=0有兩個(gè),故C錯(cuò)誤.
D.當(dāng)0<x<1時(shí),
f′(x)
x
<0,此時(shí)f′(x)<0,當(dāng)x>1時(shí),
f′(x)
x
>0,此時(shí)f′(x)>0,故當(dāng)x=1時(shí),函數(shù)f(x)取得極小值,成立.
故選:C
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的應(yīng)用,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
3x-2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y2-x-2y=0在二階矩陣M=
1 a
b 1
的作用下變換為曲線y2=x;
(i)求實(shí)數(shù)a,b的值;
(ii)求M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知AB、CD是夾在平行平面α、β間的異面線段,A,C∈α,B,D∈β,且AC=6,BD=8,AB=CD=10,AB和CD成60°角.求異面直線AC和BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C:y2=4x,過(guò)焦點(diǎn)F斜率大于零的直線l交拋物線于A、B兩點(diǎn),且與其準(zhǔn)線交于點(diǎn)D.
(Ⅰ)若線段AB的長(zhǎng)為5,求直線l的方程;
(Ⅱ)在C上是否存在點(diǎn)M,使得對(duì)任意直線l,直線MA,MD,MB的斜率始終成等差數(shù)列,若存在求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,BC=DC=AB=AD=2,BD=2,平面ABD⊥平面BCD,O為BD中點(diǎn),點(diǎn)P,Q分別為線段AO,BC上的動(dòng)點(diǎn)(不含端點(diǎn)),且AP=CQ,則三棱錐P-QCO體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c,
①函數(shù)f(x)在R上有最小值;
②當(dāng)b>0時(shí),函數(shù)f(x)在R上是單調(diào)增函數(shù);
③函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,c)對(duì)稱;
④當(dāng)b<0時(shí),方程f(x)=0有三個(gè)不同實(shí)數(shù)根的充要條件是b2>4|c|.
則上述命題中所有正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱(側(cè)棱與底面垂直的三棱柱)ABC-A1B1C1中,AB=8,AC=6,BC=10.求證:
(1)AB⊥平面ACC1A1
(2)AB⊥A1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是( 。
A、在統(tǒng)計(jì)里,從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本的容量
B、一組數(shù)據(jù)的平均數(shù)一定大于這組數(shù)據(jù)中的每個(gè)數(shù)據(jù)
C、平均數(shù)、眾數(shù)與中位數(shù)從不同的角度描述了一組數(shù)據(jù)的集中趨勢(shì)
D、一組數(shù)據(jù)的方差越大,說(shuō)明這組數(shù)據(jù)的波動(dòng)性越大

查看答案和解析>>

同步練習(xí)冊(cè)答案