【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),求的取值范圍.

【答案】1)見解析;(2

【解析】

1)根據(jù)題意,討論的范圍,令求出增區(qū)間,令求出減區(qū)間。

2)由題意可知,上有解,討論的范圍,判斷的單調(diào)性和零點(diǎn)個(gè)數(shù),得出結(jié)論。

1)函數(shù)的定義域?yàn)?/span>,

①當(dāng)時(shí),

因?yàn)?/span>時(shí),,

所以的單調(diào)增區(qū)間為

②當(dāng),即時(shí),令,得

當(dāng)時(shí),;當(dāng)時(shí),;

所以的單調(diào)增區(qū)間為,減區(qū)間為

綜上,當(dāng)時(shí),的單調(diào)增區(qū)間為;

當(dāng)時(shí),的單調(diào)增區(qū)間為,

減區(qū)間為

2)因?yàn)?/span>

所以

,

若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),

則函數(shù)在區(qū)間內(nèi)存在零點(diǎn).

,所以內(nèi)有唯一零點(diǎn)

時(shí),;時(shí),

內(nèi)為減函數(shù),在內(nèi)為增函數(shù).

又因?yàn)?/span>內(nèi)存在零點(diǎn),

所以解得

顯然內(nèi)有唯一零點(diǎn),記為

當(dāng)時(shí),,時(shí),,所以點(diǎn)兩側(cè)異號(hào),即點(diǎn)兩側(cè)異號(hào),為函數(shù)在區(qū)間內(nèi)唯一極值點(diǎn).

當(dāng)時(shí),,又,內(nèi)成立,

所以內(nèi)單調(diào)遞增,故無極值點(diǎn).

當(dāng)時(shí),,,易得時(shí),,故無極值點(diǎn).

所以當(dāng)且僅當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),的最小值為,且對(duì)任意的,不等式恒成立,則實(shí)數(shù)m的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中曲線C的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線lAB兩點(diǎn),且這兩點(diǎn)的極坐標(biāo)分別為.

I)求C的普通方程和的直角坐標(biāo)方程;

II)若M為曲線C上一動(dòng)點(diǎn),求點(diǎn)M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為t為參數(shù),0απ),曲線C2的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線C2的極坐標(biāo)方程;

2)設(shè)曲線C1與曲線C2的交點(diǎn)分別為A,B,M(﹣2,0),求|MA|2+|MB|2的最大值及此時(shí)直線C1的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),設(shè)它的左、右焦點(diǎn)分別為、,左頂點(diǎn)為,上頂點(diǎn)為,且滿足

)求橢圓的標(biāo)準(zhǔn)方程和離心率;

)過點(diǎn)作不與軸垂直的直線交橢圓、(異于點(diǎn))兩點(diǎn),試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若處導(dǎo)數(shù)相等,證明:為定值,并求出該定值;

(2)已知對(duì)于任意,直線與曲線有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù))

1)求的普通方程;

2)設(shè)點(diǎn),直線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,平面,四邊形為平行四邊形,點(diǎn)分別為的中點(diǎn),且,.

1)求證:平面;

2)若,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).

(1)如果直線過拋物線的焦點(diǎn),求的值;

(2)如果,證明直線必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案