6.若函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),則不等式4f(x+1)>7的解集為(  )
A.(2,+∞)B.(-∞,-1)∪(3,+∞)C.(-4,2)D.(-∞,-4)

分析 求出x<0時(shí),函數(shù)的解析式,當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),函數(shù)單調(diào)遞減,且f(x)<1,即可解不等式.

解答 解:設(shè)x<0,則-x>0時(shí),
∵函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),
∴f(x)=-f(-x)=$\frac{1}{x-1}$+log2(-x+1),
∵當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),函數(shù)單調(diào)遞減,且f(x)<1,
∴不等式4f(x+1)>7,即不等式f(x+1)>$\frac{7}{4}$,
∴$\left\{\begin{array}{l}{x+1<0}\\{\frac{1}{x}+lo{g}_{2}(-x)>\frac{7}{4}}\end{array}\right.$,∴x<-4.
故選D.

點(diǎn)評(píng) 本題考查解不等式,考查函數(shù)解析式的求解,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|2a<x<2a+1}.
(1)求(∁RA)∩B;
(2)若B∪C=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.對(duì)于下列命題:
①對(duì)立事件一定是互斥事件,但互斥事件卻不一定是對(duì)立事件;
②設(shè)隨機(jī)變量ξ的可能值為0,1,2,且P(ξ=0)=0.4,如果E(ξ)=1,那么D(ξ)=0.8;
③一個(gè)家庭中有三個(gè)小孩,假定生男孩和生女孩都是等可能的,事件A={這個(gè)家庭中既有男孩又有女孩},事件B={這個(gè)家庭中最多一個(gè)女孩},則A與B是相互獨(dú)立事件;
④從1,2,3,…,9中任取3個(gè)數(shù),設(shè)ξ為這3個(gè)數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1、2和2、3,此時(shí)ξ=2),則P(ξ=0)的值大于$\frac{3}{8}$.
對(duì)于上述的四個(gè)命題,其中是真命題的有①②④(把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{xn}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn+3=xn對(duì)于任意正整數(shù)n均成立,則數(shù)列{xn}的前2016項(xiàng)和S2016的值為1344.(用具體的數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,其左右焦點(diǎn)分別為F1、F2,過橢圓的左焦點(diǎn)F1作一條傾斜角為45°的直線與橢圓交于A,B兩點(diǎn)
(1)求三角形ABF2的周長;
(2)求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+1=2n,則a12+a32+a52+…+a2n-12等于( 。
A.$\frac{{4}^{n}-1}{3}$B.$\frac{1-{4}^{n}}{3}$C.$\frac{1{6}^{n}-1}{15}$D.$\frac{1-1{6}^{n}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上的函數(shù)f(x)滿足對(duì)于任意的x∈R,都有f(x+9)=f(x)+1,且x∈[0,9)時(shí),f(x)=x+2,則f(2015)的值為233.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中正確的是( 。
A.函數(shù)y=sinx,x∈[0,2π]是奇函數(shù)
B.函數(shù)y=2sin($\frac{π}{6}$-2x)在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上單調(diào)遞減
C.函數(shù)y=2sin($\frac{π}{3}-2x$)-cos($\frac{π}{6}+2x$)(x∈R)的一條對(duì)稱軸方程是x=$\frac{π}{6}$
D.函數(shù)y=sinπx•cosπx的最小正周期為2,且它的最大值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一個(gè)樣本a,3,5,7的平均數(shù)是b,且a,b是方程x2-5x+4=0的兩根,則這個(gè)樣本的標(biāo)準(zhǔn)差是$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案