已知數(shù)列滿足:
(1)令,判斷是否為等差數(shù)列,并求出;
(2)記的前項(xiàng)的和為,求

(1)是以為首項(xiàng),以為公差的等差數(shù)列,;
(2)

解析試題分析:(1)注意從出發(fā),確定
數(shù)列中相鄰項(xiàng)的關(guān)系,得到,再根據(jù)為首項(xiàng),以為公差的等差數(shù)列 ,確定通項(xiàng)公式.
(2)研究發(fā)現(xiàn)是以為首項(xiàng),以為公比的等比數(shù)列;
是以為首項(xiàng),以為公差的等差數(shù)列,因此,應(yīng)用“分組求和法”,計(jì)算等比、等差數(shù)列數(shù)列的和.
解得本題的關(guān)鍵是確定數(shù)列的基本特征.
試題解析:(1)

                                                          4分

是以為首項(xiàng),以為公差的等差數(shù)列                           5分
                                                   6分
(2)對(duì)于
當(dāng)為偶數(shù)時(shí),可得
是以為首項(xiàng),以為公比的等比數(shù)列;                  8分
當(dāng)為奇數(shù)時(shí),可得,
是以為首項(xiàng),以為公差的等差數(shù)列                    10分

                          12分
考點(diǎn):等差數(shù)列、等比數(shù)列的通項(xiàng)公式及其求和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,
(1) 求數(shù)列的通項(xiàng)公式;(2) 令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將數(shù)列按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,并同時(shí)滿足以下兩個(gè)條件:①各行的第一
個(gè)數(shù)構(gòu)成公差為的等差數(shù)列;②從第二行起,每行各數(shù)按從左到右的順序都構(gòu)成公比為的等比數(shù)列.若,.

(1)求的值;
(2)求第行各數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求公比;
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)一切成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中, (為常數(shù),)且成公比不等于1的等比數(shù)列.
(1)求的值;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是各項(xiàng)為不同的正數(shù)的等差數(shù)列,成等差數(shù)列,又
(1)證明:為等比數(shù)列;
(2)如果數(shù)列前3項(xiàng)的和為,求數(shù)列的首項(xiàng)和公差;
(3)在(2)小題的前題下,令為數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在公差不為0的等差數(shù)列中,,且成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)設(shè),試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列中,已知 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案