已知等差數(shù)列是遞增數(shù)列,且滿(mǎn)足 
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和
(1)根據(jù)題意:,知:
是方程的兩根,且
解得,                               …………3分
設(shè)數(shù)列的公差為,由    ……5分
故等差數(shù)列的通項(xiàng)公式為:…7分
(2)當(dāng)時(shí),
                    …10分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知函數(shù)f(x)=x3x2-2.
(1)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)yf′(x)的圖象上,求證:點(diǎn)(n,Sn)也在yf′(x)的圖象上;
(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;  
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且,(n=1,2,3…)數(shù)列中,,點(diǎn)在直線(xiàn)上。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求滿(mǎn)足的最大正整數(shù)n。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分16分)
已知, 點(diǎn)在曲線(xiàn)     
(Ⅰ)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,若對(duì)于任意的,存在正整數(shù)t,使得恒成立,求最小正整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)(1)為等差數(shù)列{an}的前n項(xiàng)和,,,求.
(2)在等比數(shù)列中,的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則=           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)
設(shè)給定數(shù)列,
(1)求證:
(2)求證:數(shù)列是單調(diào)遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是公比為的等比數(shù)列,且成等差數(shù)列,則_______

查看答案和解析>>

同步練習(xí)冊(cè)答案