解答:解:(1)設(shè)數(shù)列{a
n}的公差為d,由題意得
解得
,所以a
n=3n-2.
(2).由a
n=3n-2,
bn=loga,
知S
n=log
a(1+1)+log
a(1+
)+…+log
a(1+
)
=log
a[(1+1)(1+
)…(1+
)],
logaan+1=
loga(3n+1)=
loga要比較S
n與
log
aa
n+1的大小,先比較(1+1)(1+
)…(1+
)與
取n=1有(1+1)>
,取n=2有(1+1)(1+
)>
,…,
由此推測(cè)(1+1)(1+
)…(1+
)>
. ①
若①式成立,則由對(duì)數(shù)函數(shù)性質(zhì)可斷定:當(dāng)a>1時(shí),S
n>
log
aa
n+1;當(dāng)0<a<1時(shí),S
n<
log
aa
n+1下面用數(shù)學(xué)歸納法證明①式.
(。┊(dāng)n=1時(shí)已驗(yàn)證①式成立.
(ⅱ)假設(shè)當(dāng)n=k(k≥1)時(shí),①式成立,即(1+1)(1+
)…(1+
)>
.
那么,當(dāng)n=k+1時(shí),(1+1)(1+
)…(1+
)(1+
)>
(1+
)=
(3k+2).
因?yàn)?span id="pnv5ff1" class="MathJye">[
(3k+2)
]3-[
]3=
(3k+2)3-(3k+4)(3k+1)2 |
(3k+1)2 |
=
>0,
所以
(3k+2)>
=.
因而(1+1)(1+
)…(1+
)(1+
)>
.
這就是說①式當(dāng)n=k+1時(shí)也成立.
由(。,(ⅱ)知①式對(duì)任何正整數(shù)n都成立.由此證得:
當(dāng)a>1時(shí),S
n>
log
aa
n+1;當(dāng)0<a<1時(shí),S
n<
log
aa
n+1由于①等價(jià)于k<g(α),k∈Z
∴k的最大值為2