【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)
【答案】(1)遞增區(qū)間為,,單調(diào)遞減區(qū)間為; (2)見解析;(3)見解析.
【解析】
(Ⅰ)當(dāng)a=﹣1時(shí),求f(x)的導(dǎo)數(shù)f′(x),由f′(x)>0,得f(x)單調(diào)遞增;f′(x)<f(x)單調(diào)遞減;
(Ⅱ)由f′(x)=3x2+2x+a,令f′(x)=)=3x2+2x+a=a,解得x1=0,x2=,
而f(0)=﹣1,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=ax﹣1,由此可得,無論a為何值,直線y=ax﹣1是曲線y=f(x)在點(diǎn)(0,f(0))處的切線;(Ⅲ)取a的值為﹣2.
(Ⅰ)函數(shù)的定義域?yàn)?/span>
當(dāng)a=-1時(shí),
所以
令,得,
當(dāng)x變化時(shí),,的變化情況如下表:
x | -1 | ||||
+ | 0 | - | 0 | + | |
↗ | 極大值 | ↘ | 極小值 | ↗ |
所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
(Ⅱ)因?yàn)?/span>
令,解得,
而,曲線在點(diǎn)處的切線方程為,
即所以無論a為何值,直線都是曲線在點(diǎn)處的切線
(Ⅲ)取a的值為-2這里a的值不唯一,只要取a的值小于-1即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司(為企業(yè)服務(wù))準(zhǔn)備在兩種員工付酬方式中選擇一種現(xiàn)邀請(qǐng)甲、乙兩人試行10天兩種方案如下:甲無保底工資送出50件以內(nèi)(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工資50元,且每送出一件再支付2元分別記錄其10天的件數(shù)得到如圖莖葉圖,若將頻率視作概率,回答以下問題:
(1)記甲的日工資額為(單位:元),求的分布列和數(shù)學(xué)期望;
(2)如果僅從日工資額的角度考慮請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為快遞公司在兩種付酬方式中作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的圓心在直線:上,與直線:相切,截直線:所得的弦長(zhǎng)為6.
(1)求圓M的方程;
(2)過點(diǎn)的兩條成角的直線分別交圓M于A,C和B,D,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù),m、n為常數(shù)),函數(shù)定義為:對(duì)每一個(gè)給定的實(shí)數(shù)x,
(1)當(dāng)m、n滿足什么條件時(shí),對(duì)所有的實(shí)數(shù)x恒成立;
(2)設(shè)a、b是兩個(gè)實(shí)數(shù),滿足且m,當(dāng)時(shí),求函數(shù)在區(qū)間的上的單調(diào)增區(qū)間的長(zhǎng)度之和(用含a、b的式子表示)(閉區(qū)間的長(zhǎng)度定義為).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某新建小區(qū)規(guī)劃利用一塊空地進(jìn)行配套綠化.已知空地的一邊是直路,余下的外圍是拋物線的一段弧,直路的中垂線恰是該拋物線的對(duì)稱軸(如圖),點(diǎn)O是的中點(diǎn).擬在這個(gè)地上劃出一個(gè)等腰梯形區(qū)域種植草坪,其中均在該拋物線上.經(jīng)測(cè)量,直路長(zhǎng)為60米,拋物線的頂點(diǎn)P到直路的距離為60米.設(shè)點(diǎn)C到拋物線的對(duì)稱軸的距離為m米,到直路的距離為n米.
(1)求出n關(guān)于m的函數(shù)關(guān)系式.
(2)當(dāng)m為多大時(shí),等腰梯形草坪的面積最大?并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應(yīng)填入的條件為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,AD//BC,且,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點(diǎn),△PAD為等邊三角形,M是棱PC上的一點(diǎn),設(shè)(M與C不重合).
(1)求證:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角為150°,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預(yù)測(cè)該員工第六年的年薪為多少?
附:線性回歸方程中系數(shù)計(jì)算公式分別為:,,其中、為樣本均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com