【題目】某新建小區(qū)規(guī)劃利用一塊空地進行配套綠化.已知空地的一邊是直路,余下的外圍是拋物線的一段弧,直路的中垂線恰是該拋物線的對稱軸(如圖),點O是的中點.擬在這個地上劃出一個等腰梯形區(qū)域種植草坪,其中均在該拋物線上.經(jīng)測量,直路長為60米,拋物線的頂點P到直路的距離為60米.設(shè)點C到拋物線的對稱軸的距離為m米,到直路的距離為n米.
(1)求出n關(guān)于m的函數(shù)關(guān)系式.
(2)當(dāng)m為多大時,等腰梯形草坪的面積最大?并求出其最大值.
【答案】(1);(2),平方米
【解析】
(1)以路所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標(biāo)系,求出拋物線方程即得;
(2)由點坐標(biāo),求出,把表示為的函數(shù),再由導(dǎo)數(shù)知識求得最大值.
解:(1)以路所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標(biāo)系,
則,,,
因為曲線段為拋物線的一段弧,
所以可以設(shè)拋物線的解析式為,
將點代入得:,解得,
所以拋物線的解析式為,
因為點C在拋物線上,所以
(2)設(shè)等腰梯形的面積為S,
則,
,
,
令,得或(舍去)
10 | |||
+ | 0 | - | |
增 | 極大值 | 減 |
當(dāng)時,
答:當(dāng)時,等腰梯形的面積最大,最大值為平方米.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電子商務(wù)的發(fā)展, 人們的購物習(xí)慣正在改變, 基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決. 小韓是位網(wǎng)購達人, 每次購買商品成功后都會對電商的商品和服務(wù)進行評價. 現(xiàn)對其近年的200次成功交易進行評價統(tǒng)計, 統(tǒng)計結(jié)果如下表所示.
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
(1) 是否有的把握認為商品好評與服務(wù)好評有關(guān)? 請說明理由;
(2) 若針對商品的好評率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進行觀察, 求只有一次好評的概率.
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形ABC腰長為3,底邊BC長為4,將它沿高AD翻折,使點B與點C間的距離為2,此時四面體ABCD外接球表面積為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查一款電視機的使用時間,研究人員對該款電視機進行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:
并對不同年齡層的市民對這款電視機的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
(1)根據(jù)圖中的數(shù)據(jù),試估計該款電視機的平均使用時間;
(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認為“愿意購買該款電視機”與“市民的年齡”有關(guān);
(3)若按照電視機的使用時間進行分層抽樣,從使用時間在[0,4)和[4,20]的電視機中抽取5臺,再從這5臺中隨機抽取2臺進行配件檢測,求被抽取的2臺電視機的使用時間都在[4,20]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個值,使得函數(shù)有三個不同零點(只需直接寫出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),且滿足,=1,數(shù)列{}滿足=﹣1, (),其中是數(shù)列{}的前n項和,則=
A. ﹣2 B. ﹣1 C. 0 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a是實常數(shù),函數(shù).
(1)若曲線在處的切線過點A(0,﹣2),求實數(shù)a的值;
(2)若有兩個極值點(),
①求證:;
②求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com