【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
【答案】(1)見解析(2)5.
【解析】試題分析:(1)先求導(dǎo)數(shù),轉(zhuǎn)化研究二次函數(shù)符號(hào)變化規(guī)律:當(dāng)判別式非正時(shí),導(dǎo)函數(shù)不變號(hào);當(dāng)判別式大于零時(shí),定義域上有兩個(gè)根 ,導(dǎo)函數(shù)符號(hào)先負(fù)再正再負(fù)(2)先利用參變分離法化簡(jiǎn)不等式得,轉(zhuǎn)化求函數(shù)最小值,利用導(dǎo)數(shù)可得有唯一極小值,也是最小值,再根據(jù)極點(diǎn)條件求最小值取值范圍,進(jìn)而可得a的最小值.
試題解析: 解 (1)f′(x)=,x>-1.
當(dāng)a≥時(shí),f′(x)≤0,∴f(x)在(-1,+∞)上單調(diào)遞減.
當(dāng)0<a<時(shí),
當(dāng)-1<x<時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)<x<時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x>時(shí),f′(x)<0,f(x)單調(diào)遞減.
綜上,當(dāng)a≥時(shí),f(x)的單調(diào)遞減區(qū)間為(-1,+∞);
當(dāng)0<a<時(shí),f(x)的單調(diào)遞減區(qū)間為,,
f(x)的單調(diào)遞增區(qū)間為.
(2)原式等價(jià)于ax>(x+1)ln (x+1)+2x+1,
即存在x>0,使成立.
設(shè),x>0,
則,x>0,
設(shè)h(x)=x-1-ln (x+1),x>0,
則h′(x)=1->0,∴h(x)在(0,+∞)上單調(diào)遞增.
又h(2)<0,h(3)>0,根據(jù)零點(diǎn)存在性定理,可知h(x)在(0,+∞)上有唯一零點(diǎn),設(shè)該零點(diǎn)為x0,則x0-1=ln (x0+1),且x0∈(2,3),
∴
又a>x0+2,a∈Z,∴a的最小值為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)為正數(shù)的等差數(shù)列,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC內(nèi)的一點(diǎn).
(1)若P是等腰直角三角形PBC的直角頂點(diǎn),求PA的長(zhǎng);
(2)若∠BPC=,設(shè)∠PCB=θ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E為PB的中點(diǎn).
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù) 在(0,+∞)上為增函數(shù),g(x)=f(x)+2
(1)求m的值,并確定f(x)的解析式;
(2)對(duì)于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求實(shí)數(shù)t的值;
(3)若2xh(2x)+λh(x)≥0對(duì)于一切x∈[1,2]成成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒有獎(jiǎng),某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得的獎(jiǎng)品總價(jià)值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于兩點(diǎn), 是圓上不同于的任意一點(diǎn).
(1)求圓心的極坐標(biāo);
(2)求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com