7.已知集合P={1,m},Q={m2},若P∪Q=P,則實(shí)數(shù)m所有可以取得值是( 。
A.0B.1,0C.0,-1D.1,-1,0

分析 由P∪Q=P得Q⊆P,然后利用子集的概念得到m2=1或m2=m.求出m的值后驗(yàn)證集合中元素的互異性得答案.

解答 解:∵P∪Q=P,
∴Q⊆P,
又P={1,m},Q={m2},
∴m2=1,且m≠1,或m2=m≠1.
m2=1,且m≠1時(shí),m=-1;
當(dāng)m2=m≠1時(shí),m=0.
∴m=0或-1.
故選:C.

點(diǎn)評(píng) 本題考查了并集及其運(yùn)算,考查了子集的概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若cos(α+$\frac{π}{2}$)=-$\frac{1}{2}$,α∈($\frac{π}{2}$,π),則cos(π-α)值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,將圖(1)中的正方體截去兩個(gè)三棱錐,得到圖(2)中的幾何體,則該幾何體的側(cè)視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在邊長(zhǎng)為$5+\sqrt{2}$的正方形ABCD中,以A為圓心畫一個(gè)扇形,以O(shè)為圓心畫一個(gè)圓,M,N,K為切點(diǎn),以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個(gè)圓錐,求圓錐的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(1)函數(shù)f(x)=$\frac{1}{{x}^{2}-4x+5}$的值域?yàn)椋?,1];
(2)函數(shù)f(x)=$\frac{1-x}{2x+5}$的單調(diào)遞減區(qū)間為(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合M={x|log${\;}_{\frac{1}{2}}$(x-1)>-1},N={x|1<2x<4},則(∁UM)∩N=( 。
A.{0|0<x≤3}B.{x|1<x≤3}C.{x|0<x≤1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.$\frac{3π}{5}$弧度化為角度是( 。
A.110°B.160°C.108°D.218°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)是R上的偶函數(shù),并且在[0,+∞)上單調(diào)遞減,則f(-1),f(-3),f(5)的大小順序是( 。
A.f(-1)>f(-3)>f(5)B.f(-1)>f(5)>f(-3)C.f(5)>f(-1)>f(-3)D.f(-3)>f(-1)>f(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A(2,4)、B(-4.,6),若$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{4}{3}$$\overrightarrow{BA}$,則$\overrightarrow{CD}$的坐標(biāo)為(11,-$\frac{11}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案