16.設(shè)f(x)是R上的偶函數(shù),并且在[0,+∞)上單調(diào)遞減,則f(-1),f(-3),f(5)的大小順序是( 。
A.f(-1)>f(-3)>f(5)B.f(-1)>f(5)>f(-3)C.f(5)>f(-1)>f(-3)D.f(-3)>f(-1)>f(5)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系進(jìn)行比較即可.

解答 解:∵f(x)是R上的偶函數(shù),并且在[0,+∞)上單調(diào)遞減,
∴f(1)>f(3)>f(5),
即f(-1)>f(-3)>f(5),
故選:A

點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求經(jīng)過三點(diǎn)A(1,4),B(-2,3),C(4,-5)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合P={1,m},Q={m2},若P∪Q=P,則實(shí)數(shù)m所有可以取得值是( 。
A.0B.1,0C.0,-1D.1,-1,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z•(1+i)=|1+$\sqrt{3}i}$|,則z=( 。
A.2-2iB.1-iC.2+2iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(百分制)如表所示:
序號(hào)1234567891011121314151617181920
數(shù)學(xué)成績9575809492656784987167936478779057837283
物理成績9063728791715882938177824885699161847886
若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系( 。
A.99.5%B.99.9%C.97.5%D.95%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在(2a-3b)n的展開式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,則展開式共有( 。
A.13項(xiàng)B.12項(xiàng)C.11項(xiàng)D.10項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知U=R,M={x|x2≤4},N={x|2x>1},則M∩N=(0,2],M∪CUN=(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=|2x-2|,方程f2(x)+tf(x)+1=0,(t∈R)有3個(gè)不同的實(shí)數(shù)根,則t的取值范圍為( 。
A.(-∞,-$\frac{5}{2}$]B.(-∞,-2]C.[-$\frac{5}{2}$,-2]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,g(x)=|$\overrightarrow{a}+\overrightarrow$|,則下列性質(zhì)正確的是( 。
A.函數(shù)f(x)的最小正周期為2πB.函數(shù)g(x)為奇函數(shù)
C.函數(shù)f(x)在[0.π]遞減D.函數(shù)g(x)的最大值為2

查看答案和解析>>

同步練習(xí)冊(cè)答案