4.將曲線的參數(shù)方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))化為普通方程為$\sqrt{3}$x-y-3$\sqrt{3}$=0.

分析 曲線的參數(shù)方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t,可得普通方程.

解答 解:曲線的參數(shù)方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t,可得普通方程為$\sqrt{3}$x-y-3$\sqrt{3}$=0.
故答案為:$\sqrt{3}$x-y-3$\sqrt{3}$=0.

點評 本題考查參數(shù)方程化為標準方程,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\sqrt{2}$(sin2ωxcos$\frac{π}{4}$+cos2ωx•sin$\frac{π}{4}$)(ω>0),且f(x)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,且α、β∈(-$\frac{π}{2}$,$\frac{π}{2}$),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=ax3-2ax2+(a+1)x-log2(a2-1)不存在極值點,則實數(shù)a的取值范圍是( 。
A.(-∞,-1)B.(1,+∞)C.(1,4]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知動圓過定點F(0,1),且與定直線y=-1相切.
(Ⅰ)求動圓圓心M所在曲線C的方程;
(Ⅱ)直線l經(jīng)過曲線C上的點P(x0,y0),且與曲線C在點P的切線垂直,l與曲線C的另一個交點為Q.
①當x0=$\sqrt{2}$時,求△OPQ的面積;
②當點P在曲線C上移動時,求線段PQ中點N的軌跡方程以及點N到x軸的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.當函數(shù)f(θ)=3sinθ-4cosθ取得最大值時,cosθ=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=2cos($\frac{x}{2}$-$\frac{π}{3}$)+1
(1)求f(x)的最小正周期;對稱軸方程和對稱中心的坐標
(2)求f(x)在區(qū)間[0,2π]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知A,B的極坐標分別為(4,$\frac{2π}{3}$),(2,$\frac{π}{3}$)則直線AB的極坐標方程為ρsin(θ+$\frac{π}{6}$)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.對于平面α,直線m,n給出下列命題
①若m∥n,則m,n與α所成的角相等.
②若m∥n,n∥α,則m∥α.
③若m⊥α,m⊥n,則n⊥α
④若m與n異面且m∥α,則n與α相交,
其中正確命題個數(shù)有( 。﹤.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)f(x)=lnx+$\frac{1}{x}$,則f(sin$\frac{π}{5}$)與f(cos$\frac{π}{5}$)的大小關(guān)系是(  )
A.f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$)B.f(sin$\frac{π}{5}$)<f(cos$\frac{π}{5}$)C.f(sin$\frac{π}{5}$)=f(cos$\frac{π}{5}$)D.大小不確定

查看答案和解析>>

同步練習冊答案