11.設(shè)集合A={x|x2-x-2<0},集合B={x|-1<x≤1},則A∩B=( 。
A.[-1,1]B.(-1,1]C.(-1,2)D.[1,2)

分析 求出集合的等價(jià)條件,結(jié)合交集的定義進(jìn)行計(jì)算即可.

解答 解:A={x|x2-x-2<0}={x|-1<x<2},
則A∩B={x|-1<x≤1},
故選:B

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,求出集合的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面內(nèi)動(dòng)點(diǎn)P與點(diǎn)A(-3,0)和點(diǎn)B(3,0)的連線的斜率之積為-$\frac{8}{9}$.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡且曲線C,過點(diǎn)(1,0)的直線與曲線C交于M,N兩點(diǎn),記△AMB的面積為S1,△ANB的面積為S2,當(dāng)S1-S2取得最大值時(shí),求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,|$\overrightarrow{c}$|=7.
(1)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)是否存在實(shí)數(shù)λ,使λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線?
(3)是否存在實(shí)數(shù)μ,使μ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{2x+y≥0}\\{3x-y-a≤0}\end{array}}\right.$,若目標(biāo)函數(shù)z=x+y的最小值為$-\frac{2}{5}$,則實(shí)數(shù)a的值為( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某產(chǎn)品的廣告費(fèi)用x(單位:萬元)與銷售額y(單位:萬元)的統(tǒng)計(jì)數(shù)據(jù)如表:
 x 0 1 4
 y 22 35 48 75
根據(jù)表中數(shù)據(jù)求得回歸直線方程為$\stackrel{∧}{y}$=9.5x+$\widehat{a}$,則$\stackrel{∧}{a}$等于( 。
A.22B.26C.33.6D.19.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,則z=2x-2y-1最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\frac{cosx}{{{e^x}+1}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若z=(m2-m-2)+(m2-2m-3)i為純虛數(shù),則m=( 。
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對(duì)于數(shù)列{an},{bn},Sn為數(shù)列{an}是前n項(xiàng)和,且Sn+1-(n+1)=Sn+an+n,a1+b1=2,bn+1=3bn+2,n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=$\frac{2({a}_{n}+n)}{n(_{n}+1)}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案