分析 (1)根據(jù)平面向量的數(shù)量積,求出向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)假設(shè)存在實(shí)數(shù)λ,使λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,列方程求出λ的值;
(3)假設(shè)存在實(shí)數(shù)μ,使μ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,列出方程求出μ的值.
解答 解:(1)$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,∴-$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow$,
∴${\overrightarrow{c}}^{2}$=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$$•\overrightarrow$+${\overrightarrow}^{2}$;
又|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,|$\overrightarrow{c}$|=7,
∴49=9+2×3×5×cosθ+25;
解得cosθ=$\frac{1}{2}$;
又θ∈[0,π],
∴$\overrightarrow{a}$與$\overrightarrow$的夾角為θ=$\frac{π}{3}$;
(2)假設(shè)存在實(shí)數(shù)λ,使λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,
即λ$\overrightarrow{a}$+$\overrightarrow$=x($\overrightarrow{a}$-2$\overrightarrow$),x∈R;
∴λ$\overrightarrow{a}$+$\overrightarrow$=x$\overrightarrow{a}$-2x$\overrightarrow$,
∴$\left\{\begin{array}{l}{λ=x}\\{1=-2x}\end{array}\right.$,
解得λ=x=-$\frac{1}{2}$;
∴存在實(shí)數(shù)λ=-$\frac{1}{2}$,使λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線;
(3)假設(shè)存在實(shí)數(shù)μ,使μ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,則
(μ$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=0,
∴μ${\overrightarrow{a}}^{2}$-2μ$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow{a}$•$\overrightarrow$-2${\overrightarrow}^{2}$=0,
即9μ-2μ×3×5×$\frac{1}{2}$+3×5×$\frac{1}{2}$-2×25=0,
解得μ=-$\frac{85}{12}$;
∴存在μ=-$\frac{85}{12}$,使μ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直.
點(diǎn)評 本題考查了平面向量的數(shù)量積與運(yùn)算問題,也考查了平行與垂直的應(yīng)用問題,是綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1] | C. | (-1,2) | D. | [1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2k+1}$ | B. | $\frac{1}{2k+1}$+$\frac{1}{2k+2}$ | C. | $\frac{1}{2k+1}$-$\frac{1}{k}$ | D. | $\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com