函數(shù)y=lnx(x>0)的圖象與直線相切,則a等于( )
A.ln2-1
B.ln2+1
C.ln2
D.2ln2
【答案】分析:欲求出a的大小,只須求出切線的方程即可,故先利用導(dǎo)數(shù)求出在切點(diǎn)處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,結(jié)合題中條件求出切點(diǎn)的坐標(biāo),代入直線方程即得.
解答:解:∵,
得切點(diǎn)為(2,ln2),
代入,
得a=ln2-1.
故選A.
點(diǎn)評(píng):本小題主要考查直線的方程、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lnx(x>0)的圖象與直線y=
1
2
x+a
相切,則a等于( 。
A、ln2-1B、ln2+1
C、ln2D、2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=ex,曲線y=ex在與坐標(biāo)軸交點(diǎn)處的切線方程為y=x+1,由于曲線 y=ex在切線y=x+1的上方,故有不等式ex≥x+1.類比上述推理:對(duì)于函數(shù)y=lnx(x>0),有不等式( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lnx在x=
1
e
處的切線與坐標(biāo)軸所圍圖形的面積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lnx在x=1處的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,對(duì)于函數(shù)f(x)=x2(x>0)的圖象上不同兩點(diǎn)A(a,a2)、B(b,b2),直線段AB
必在弧線段AB的上方,設(shè)點(diǎn)C分
AB
的比為λ(λ>0),則由圖象中點(diǎn)C在點(diǎn)C'上方可得不等式
a2b2
1+λ
>(
a+λb
1+λ
)2
.請(qǐng)分析函數(shù)y=lnx(x>0)的圖象,類比上述不等式,可以得到的不等式是
lna+λlnb
1+λ
<ln
a+λb
1+λ
lna+λlnb
1+λ
<ln
a+λb
1+λ

查看答案和解析>>

同步練習(xí)冊(cè)答案