(2010•武昌區(qū)模擬)如圖,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點(diǎn)B1在底面上的射影D落在BC上.

(1)若點(diǎn)D恰為BC的中點(diǎn),且AB1⊥BC1求α的值.
(2)若α=arccos
13
,且當(dāng)AC=BC=AA1時(shí),求二面角C1-AB-C的大。
分析:(1)由題意可得:B1D⊥AC,再結(jié)合題意得到:AC⊥面BB1C1C,得到平行四邊形BB1C1C為菱形,再根據(jù)解三角形的有關(guān)知識(shí)可得:∠B1BC=60°,進(jìn)而結(jié)合線面角的定義得到答案.
(2)過C1作C1E⊥BC,垂足為E,則C1E⊥平面ABC.過E作EF⊥AB,垂足為F,則根據(jù)二面角平面角的定義可得:∠C1FE是所求二面角C1-AB-C的平面角,吧平面角放入直角三角形,進(jìn)而利用解三角形的有關(guān)知識(shí)求出二面角的平面角.
解答:解:(1)∵B1D⊥面ABC,
∴B1D⊥AC,
又∵AC⊥BC,
∴AC⊥面BB1C1C.
∵AB1⊥BC1,
∴由三垂線定理可知,B1C⊥BC1,即平行四邊形BB1C1C為菱形,
又∵B1D⊥BC,且D為BC的中點(diǎn),
∴B1C=B1B,即△BB1C為正三角形,
∴∠B1BC=60°,
∵B1D⊥面ABC,且點(diǎn)D落在BC上,
∴∠B1BC即為側(cè)棱與底面所成的角,
∴α=60°.
(2)過C1作C1E⊥BC,垂足為E,則C1E⊥平面ABC.過E作EF⊥AB,垂足為F,由三垂線定理得⊥F⊥AB.
∴根據(jù)二面角平面角的定義可得:∠C1FE是所求二面角C1-AB-C的平面角.
設(shè)AC=BC=A1A=a,
在Rt△CC1E中,由∠C1CE=α=srccos
1
3
可得C1E=
2
2
3
a,
所以在Rt△BEF中,∠EBF=45°,EF=
2
2
BE=
2
2
3
a,
所以∠C1FE=45°.
故所求的二面角C1-AB-C為45°.
點(diǎn)評(píng):本題考查求二面角的平面角與線面角,而空間角解決的關(guān)鍵是做角,由圖形的結(jié)構(gòu)及題設(shè)條件正確作出平面角來(lái),是求角的關(guān)鍵,也可以根據(jù)幾何體的結(jié)構(gòu)特征建立空間直角坐標(biāo)系利用向量的有關(guān)知識(shí)解決空間角等問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)球面上有3個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的
1
6
,經(jīng)過這3點(diǎn)的小圓周長(zhǎng)為4π,那么這個(gè)球的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)一個(gè)口袋中裝有4個(gè)紅球和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球顏色不同則中獎(jiǎng).
(Ⅰ)試求一次摸獎(jiǎng)中獎(jiǎng)的概率P;
(Ⅱ)求三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)中獎(jiǎng)次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)設(shè)函數(shù)f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然對(duì)數(shù)的底數(shù).
(1)求p與q的關(guān)系;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍.
(3)設(shè)g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)
lim
x→0
=
ex-1
x
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)2010年兩會(huì)記者招待會(huì)上,主持人要從5名中國(guó)記者與4名外主國(guó)記者中選出3名進(jìn)行提問,要求3人中既有國(guó)內(nèi)記者又有國(guó)外記者,且國(guó)內(nèi)記者不能連續(xù)提問,則不同的提問方式的種數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案