分析 如果數(shù)列{cn+1-pcn}為等比數(shù)列,則必有c2-pc1,c3-pc2,c4-pc3成等比數(shù)列.由此,可以求出p的值,然后證明所求p值符合題意.
解答 解:因?yàn)閧cn+1-pcn}是等比數(shù)列,
故有c2-pc1,c3-pc2,c4-pc3成等比數(shù)列,
所以(c3-pc2)2=(c2-pc1)(c4-pc3),
即(35-13p)2=(13-5p)(97-35p).
解得p=2或p=3.
證明如下:
當(dāng)p=2時(shí),cn+1-pcn=(2n+1+3n+1)-2(2n+3n)=3n,數(shù)列{cn+1-pcn}成等比數(shù)列;
當(dāng)p=3時(shí),cn+1-pcn=(2n+1+3n+1)-3(2n+3n)=-2n,數(shù)列{cn+1-pcn}成等比數(shù)列.
∴數(shù)列{cn+1-pcn}成等比數(shù)列的充要條件為p=2或p=3.
點(diǎn)評(píng) 本題考查數(shù)列{cn+1-pcn}成等比數(shù)列的充要條件的探求和證明,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\frac{2}{{x}^{2}-1}$ | B. | f(x)=$\frac{1}{{x}^{2}-1}$ | C. | f(x)=$\frac{2x}{{x}^{2}-1}$ | D. | f(x)=$\frac{x}{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com