【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求的極坐標方程;
(2)若曲線的極坐標方程為,直線與在第一象限的交點為,與的交點為(異于原點),求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,且,函數(shù).
(1)如果實數(shù)a,b滿足,,試判斷函數(shù)的奇偶性;
(2)設(shè),,判斷函數(shù)在R上的單調(diào)性并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù), , 為自然對數(shù)的底數(shù).當(dāng)時,若, ,不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計 | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請說明是否有以上的把握認為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知點和.
()若, 是正方形一條邊上的兩個頂點,求這個正方形過頂點的兩條邊所在直線的方程;
()若, 是正方形一條對角線上的兩個頂點,求這個正方形另外一條對角線所在直線的方程及其端點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小陳同學(xué)進行三次定點投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.
(1)求小陳同學(xué)三次投籃至少命中一次的概率;
(2)記小陳同學(xué)三次投籃命中的次數(shù)為隨機變量,求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在函數(shù)()的所有切線中,有且僅有一條切線與直線垂直.
(1)求的值和切線的方程;
(2)設(shè)曲線在任一點處的切線傾斜角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論:
①是偶函數(shù);②在區(qū)間單調(diào)遞減;
③在有個零點;④的最大值為.
其中所有正確結(jié)論的編號是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com