【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計(jì) | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請(qǐng)說(shuō)明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
【答案】(1)學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是和.初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān).
(2)有的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān).
【解析】分析:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是,由于兩個(gè)百分比差距明顯,故初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān).
根據(jù)對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作的列聯(lián)表,求出的觀測(cè)值k的值為,再根據(jù),該校高中學(xué)生“損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神”有關(guān).
詳解:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是,.
由于兩個(gè)百分比差距明顯,故初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān).
根據(jù)表格:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |||||
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 | ||||
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 | ||||
總計(jì) | 80 | 320 | 400 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式的解集是,求,的值;
(2)設(shè)關(guān)于的不等式的解集是,集合,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 ,再將所得曲線向左平移1個(gè)單位,得到曲線C1 , 求曲線C1上的點(diǎn)到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為k(k≠0)的直線 交橢圓 于 兩點(diǎn)。
(1)記直線 的斜率分別為 ,當(dāng) 時(shí),證明:直線 過(guò)定點(diǎn);
(2)若直線 過(guò)點(diǎn) ,設(shè) 與 的面積比為 ,當(dāng) 時(shí),求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國(guó)夢(mèng)”的重要保障.某地政府在對(duì)某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬(wàn)元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過(guò)5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬(wàn)元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為元/件.
(1)試將該批產(chǎn)品的利潤(rùn)萬(wàn)元表示為推廣促銷費(fèi)萬(wàn)元的函數(shù);(利潤(rùn)=銷售額-成本-推廣促銷費(fèi))
(2)當(dāng)推廣促銷費(fèi)投入多少萬(wàn)元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年10月9日,教育部考試中心下發(fā)了《關(guān)于年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會(huì)主義核心價(jià)值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.鞍山市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全是范圍內(nèi)開(kāi)設(shè)書(shū)法課,經(jīng)典誦讀等課程.為了了解市民對(duì)開(kāi)設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了位市民進(jìn)行了解,發(fā)現(xiàn)支持開(kāi)展的占,在抽取的男性市民人中支持態(tài)度的為人.
支持 | 不支持 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(1)完成列聯(lián)表
(2)判斷是否有的把握認(rèn)為性別與支持有關(guān)?
附:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com