(本小題滿分14分)
設(shè)橢圓的左、右焦點分別為是橢圓上的一點,,原點到直線的距離為.
(Ⅰ)證明;
(Ⅱ)設(shè)為橢圓上的兩個動點,,過原點作直線的垂線,垂足為,求點的軌跡方程.
(Ⅰ)
(Ⅱ)點的軌跡方程為
【解析】(Ⅰ)證法一:由題設(shè)及,,不妨設(shè)點,其中.由于點在橢圓上,有,即.
解得,從而得到.
直線的方程為,整理得.
由題設(shè),原點到直線的距離為,即,
將代入上式并化簡得,即.
證法二:同證法一,得到點的坐標(biāo)為.
過點作,垂足為,易知,故.
由橢圓定義得,又,
所以,
解得,而,得,即.
(Ⅱ)解法一:設(shè)點的坐標(biāo)為.
當(dāng)時,由知,直線的斜率為,所以直線的方程為,或,其中,.
點的坐標(biāo)滿足方程組
將①式代入②式,得,
整理得,
于是,.
由①式得
.
由知.將③式和④式代入得,
.
將代入上式,整理得.
當(dāng)時,直線的方程為,的坐標(biāo)滿足方程組
所以,.
由知,即,
解得.
這時,點的坐標(biāo)仍滿足.
綜上,點的軌跡方程為 .
解法二:設(shè)點的坐標(biāo)為,直線的方程為,由,垂足為,可知直線的方程為.
記(顯然),點的坐標(biāo)滿足方程組
由①式得. ③
由②式得. 、
將③式代入④式得.
整理得,
于是. ⑤
由①式得. 、
由②式得. 、
將⑥式代入⑦式得,
整理得,
于是. 、
由知.將⑤式和⑧式代入得,
.
將代入上式,得.
所以,點的軌跡方程為.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com