若雙曲線
x2
a2
-y2=1過點(diǎn)P(2
2
,1),則雙曲線的焦點(diǎn)坐標(biāo)是(  )
A.(±
3
,0)
B.(±
5
,0)
C.(0,±
3
D.(0,±
5
將點(diǎn)P(2
2
,1)代入雙曲線
x2
a2
-y2=1,解得a2=4,
∴c2=5,∴雙曲線的焦點(diǎn)坐標(biāo)是
5
,0)
,
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:x2-
y2
4
=1
,P為C上任意一點(diǎn);
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個(gè)常數(shù);
(2)設(shè)點(diǎn)A(4,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點(diǎn)為F,左,右頂點(diǎn)分別為A1,A2.過F且與雙曲線C的一條漸近線平行的直線l與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線C的離心率為( 。
A.
2
B.2C.
3
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是雙曲線
x2
4
-
y2
5
=1
右支上一點(diǎn),F(xiàn)是該雙曲線的右焦點(diǎn),點(diǎn)M為線段PF的中點(diǎn),若|OM|=3,則點(diǎn)P到該雙曲線右準(zhǔn)線的距離為( 。
A.
4
3
B.
3
4
C.
3
2
D.
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線
x2
16
-
y2
9
=1
上的點(diǎn)P到點(diǎn)(5,0)的距離為6,則P到點(diǎn)(-5,0)的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線
x2
9
-
y2
m
=1
的漸近線方程為y=±
5
3
x
,則雙曲線焦點(diǎn)F到漸近線的距離為 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“mn<0”是方程“mx2+ny2=1表示雙曲線”的(  )
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
36
-
y2
49
=1的漸近線方程是( 。
A.
x
36
±
y
49
=0
B.
y
36
±
x
49
=0
C.
x
6
±
y
7
=0
D.
x
7
±
y
6
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),P是橢圓上任意一點(diǎn),則當(dāng)直線PM,PN的斜率都存在時(shí),其乘積恒為定值.類比橢圓,寫出雙曲線C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的類似性質(zhì),并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案