【題目】已知函數(shù)f(x)是定義域為R的奇函數(shù),且滿足f(x﹣2)=f(x+2),當x∈(0,2)時,f(x)=ln(x2﹣x+1),則方程f(x)=0在區(qū)間[0,8]上的解的個數(shù)是( 。
A.3B.5C.7D.9
【答案】D
【解析】
由f(x﹣2)=f(x+2)可得f(x)的周期為4,然后判斷一個周期函數(shù)零點的個數(shù),再根據周期性進行分析得到結論.
由f(x﹣2)=f(x+2)得,f(x)=f(x+4),∴f(x)的周期為4,
∵x∈(0,2)時,f(x)=ln(x2﹣x+1),f(x)為奇函數(shù),
當x=0時,f(0)=0,當﹣2<x<0時,f(x)=﹣ln(x2+x+1),
∴當﹣2<x<2時,f(x),
當﹣2<x<2時,令f(x)=0,則x=0,或x=±1,
又f(﹣2)=f(2)=﹣ f(2),故f(2)=0,則f(6)=0
∴當x∈[0,8]時,f(x)的零點為:0,1,3,4,5,7,8,2,6共9個.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足,.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調區(qū)間;
(3)給出定義:若s,t,r滿足,則稱s比t更接近于r,當x≥1時,試比較和哪個更接近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)的圖象與軸相切.
(1)求實數(shù)a的值;
(2)求的單調區(qū)間;
(3)當時,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有
A. 72種 B. 36種 C. 24種 D. 18種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,,分別是橢圓的左、右焦點,直線過點與橢圓交于、兩點,且的周長為.
(1)求橢圓的標準方程;
(2)是否存在直線使的面積為?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】噪聲污染已經成為影響人們身體健康和生活質量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關系,將測量得到的聲音強度和聲音能量(,2,…,10)數(shù)據作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.
表中.
(1)根據散點圖判斷,與哪一個適宜作為聲音強度關于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據表中數(shù)據,求聲音強度關于聲音能量的回歸方程.
參考公式:;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為,且與短軸的一個端點Q構成一個等腰直角三角形,點P()在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R()
(3)求面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖因事故都受到不同程度的損壞,但可見部分如下,據此解答如下問題:
(1)求分數(shù)在[50,60)的頻率及全班人數(shù);
(2)求分數(shù)在[80,90)的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)若規(guī)定:90分(包含90分)以上為優(yōu)秀,現(xiàn)從分數(shù)在80分(包含80分)以上的試卷中任取兩份分析學生失分情況,求在抽取的試卷中至少有一份優(yōu)秀的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com