【題目】為了緩解城市交通壓力,某市市政府在市區(qū)一主要交通干道修建高架橋,兩端的橋墩現(xiàn)已建好,已知這兩橋墩相距m米,“余下的工程”只需建兩端橋墩之間的橋面和橋墩.經(jīng)測(cè)算,一個(gè)橋墩的工程費(fèi)用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素.記“余下工程”的費(fèi)用為y萬元.
(1)試寫出工程費(fèi)用y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使工程費(fèi)用y最?并求出其最小值.
【答案】(1);(2)需新建9個(gè)橋墩才能使工程費(fèi)用y取得最小值,且最少費(fèi)用為8 704萬元.
【解析】試題分析:(1)設(shè)出相鄰橋墩間距米,需建橋墩個(gè),根據(jù)題意余下工程的費(fèi)用為橋墩的總費(fèi)用加上相鄰兩墩之間的橋面工程總費(fèi)用即可得到的解析式;(2)把米代入到的解析式中并求出令其等于0,然后討論函數(shù)的增減性判斷函數(shù)的最小值時(shí)的值代入中求出橋墩個(gè)數(shù)即可.
試題解析:(1)相鄰橋墩間距米,需建橋墩個(gè),則,()
(2)當(dāng)米時(shí), , ,∵且時(shí), , 單調(diào)遞增, 時(shí), , 單調(diào)遞減,∴,∴需新建橋墩個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結(jié)論正確的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:“x0∈(-1,1),x-x0-m=0(m∈R)”是正確的,設(shè)實(shí)數(shù)m的取值集合為M.
(1)求集合M;
(2)設(shè)關(guān)于x的不等式(x-a)(x+a-2)<0(a∈R)的解集為N,若“x∈M”是“x∈N”的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育利研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競(jìng)爭(zhēng)力得到大幅提升.伴隨著國內(nèi)市場(chǎng)增速放緩,國內(nèi)確實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來,如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場(chǎng),在海外共設(shè)30多個(gè)分支機(jī)構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派上作的態(tài)度,按分層抽樣的方式從70后利80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計(jì) | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合計(jì) | 60 | 40 | 100 |
(1)根據(jù)凋查的數(shù)據(jù),是否有的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(2)該公司參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排4名參與調(diào)查的70后員工參加,70后的員工中有愿意被外派的3人和不愿意被外派的3人報(bào)名參加,現(xiàn)采用隨機(jī)抽樣方法從報(bào)名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外“活動(dòng)時(shí)間”,從轄區(qū)住戶的離退休老人中隨機(jī)抽取了100位老人進(jìn)行調(diào)查,獲得了每人每天的平均戶外“活動(dòng)時(shí)間”(單位:小時(shí)),活動(dòng)時(shí)間按照、、…、從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計(jì)該社區(qū)住戶中離退休老人每天的平均戶外“活動(dòng)時(shí)間”的中位數(shù);
(3)在、這兩組中采用分層抽樣抽取7人,再從這7人中隨機(jī)抽取2人,求抽取的兩人恰好都在同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 若橢圓上一點(diǎn)滿足,且橢圓過點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)是點(diǎn)在軸上的垂足,延長(zhǎng)交橢圓于,求證: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場(chǎng)升旗時(shí)刻表:
表1:某年部分日期的天安門廣場(chǎng)升旗時(shí)刻表
日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安門廣場(chǎng)升旗時(shí)刻表
日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機(jī)選出一天,試估計(jì)這一天的升旗時(shí)刻早于7:00的概率;
(2)甲、乙二人各自從表2的日期中隨機(jī)選擇一天觀看升旗,且兩人的選擇相互獨(dú)立,記為這兩人中觀看升旗的時(shí)刻早于7:00的人數(shù),求的 分布列和數(shù)學(xué)期望;
(3)將表1和表2的升旗時(shí)刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為),記表2中所有升旗時(shí)刻對(duì)應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時(shí)刻對(duì)應(yīng)數(shù)據(jù)的方差為,判斷與的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,直線經(jīng)過的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的右焦點(diǎn)為,過點(diǎn)作斜率不為的直線交橢圓于兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).
(1)求他們選擇的項(xiàng)目所屬類別互不相同的概率;
(2)記ξ為3人中選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com