14.若an=2n-1+1(n∈N*),則33是數(shù)列{an}的第6項.

分析 題目給出了一個數(shù)列的通項公式,判斷33是這個數(shù)列的第幾項,直接用33替換通項公式中的an,求解n的值即可.

解答 解:由題意可得:an=2n-1+1=33,
解得n=6,
故答案為:6.

點評 本題考查了數(shù)列的概念及簡單表示法,考查了在通項公式給出的前提下由項求項數(shù),是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)=|x-3|-|x-a|
(1)如果f(x)>-4的解集是R,求實數(shù)a的取值范圍;
(2)如果對任意的t∈(0,1),f(x)≤$\frac{1}{t}+\frac{9}{1-t}$對x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在一次抽獎活動中,8張獎券中有一、二、三等獎各1張,其余5張無獎.甲、乙、丙、丁四名顧客每人從中抽取2張,則不同的獲獎情況有( 。
A.24種B.36種C.60種D.96種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知sin(α+$\frac{π}{3}$)+sinα=-$\frac{4\sqrt{3}}{5}$.-$\frac{π}{2}$<α<0,則sin(-α+$\frac{5π}{6}$)等于( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知△ABC的三個頂點A(0,5),B(1,2),C(-6,4),求BC邊上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=$\frac{{\sqrt{2}}}{2}$AB.
(1)求證:BC1∥平面A1CD;
(2)求銳角二面角D-A1E-C的平面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知向量$\overrightarrow a=(2,m)$,$\overrightarrow b=(m,2)$,若$\overrightarrow a∥\overrightarrow b$,則實數(shù)m等于( 。
A.-2B.2C.-2或2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知2a>2b>1,則下列不等關(guān)系式中一定正確的是(  )
A.sinα>sinbB.log2a<log2bC.a3<b3D.($\frac{1}{2}$)a<($\frac{1}{2}$)b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐O-ABCD中,底面ABCD是菱形,∠ABC=60°,OA=AB=2,OA⊥底面ABCD,M為OA的中點,N為BC的中點.作AP⊥CD于點P,分別以AB,AP,AO所在直線為x,y,z軸,建立如圖空間直角坐標系.
(1)證明:直線MN∥平面OCD;  
(2)求異面直線AB與MD所成角的余弦值;
(3)求點B到平面OCD的距離.

查看答案和解析>>

同步練習冊答案