5.在一次抽獎活動中,8張獎券中有一、二、三等獎各1張,其余5張無獎.甲、乙、丙、丁四名顧客每人從中抽取2張,則不同的獲獎情況有( 。
A.24種B.36種C.60種D.96種

分析 分類討論,一、二、三等獎,三個人獲得;一、二、三等獎,有1人獲得2張,1人獲得1張.

解答 解:分類討論,一、二、三等獎,三個人獲得,共有A43=24種;
一、二、三等獎,有1人獲得2張,1人獲得1張,共有C32A42=36種,
共有24+36=60種.
故選:C.

點(diǎn)評 本題考查排列、組合及簡單計數(shù)問題,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,則該幾何體的體積為40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱之為三角形的歐拉線.若△ABC的頂點(diǎn)A(2,0),B(0,4),且△ABC的歐拉線的方程為x-y+2=0,則頂點(diǎn)C的坐標(biāo)為( 。
A.(-4,0)B.(-4,-2)C.(-2,2)D.(-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲線是圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F為拋物線C:y2=5x的焦點(diǎn),點(diǎn)A(3,1),M是拋物線C上的動點(diǎn),當(dāng)|MA|+|MF|取最小值$\frac{17}{4}$時,
點(diǎn)M的坐標(biāo)為($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不共線的非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=|-2$\overrightarrow{a}$|,則向量2$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-4}$的最大值為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若an=2n-1+1(n∈N*),則33是數(shù)列{an}的第6項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k為常數(shù))有四個零點(diǎn),則這四個零點(diǎn)之和為( 。
A.-2kB.0C.2kD.4k

查看答案和解析>>

同步練習(xí)冊答案