以過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是( 。
A.相交B.相切C.相離D.不能確定

精英家教網(wǎng)
設(shè)過右焦點F的弦為AB,右準(zhǔn)線為l,A、B在l上的射影分別為C、D
連接AC、BD,設(shè)AB的中點為M,作MN⊥l于N
根據(jù)圓錐曲線的統(tǒng)一定義,可得
|AF|
|AC|
=
|BF|
|BD|
=e,可得
|AF|+|BF|
|AC|+|BD|
=e<1

∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB為直徑的圓半徑為r=
1
2
|AB|,|MN|=
1
2
(|AC|+|BD|)
∴圓M到l的距離|MN|>r,可得直線l與以AB為直徑的圓相離
故選:C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,原點到過A(a,0),B(0,-b)兩點的直線的距離是
4
5
5

(1)求橢圓的方程;
(2)已知直線y=kx+1(k≠0)交橢圓于不同的兩點E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,長軸長為2
3

(1)求橢圓的方程;
(2)試直線y=kx+1交橢圓于不同的兩點A、B,以AB為直徑的圓恰過原點O,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶坻區(qū)一模)設(shè)直線l:y=x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩個不同的點,與x軸相交于點F.
(1)證明:a2+b2>1;
(2)若F是橢圓的一個焦點,且以AB為直徑的圓過原點,求a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),點A、B坐標(biāo)為A(a,0),B(0,b),若△ABC面積為
3
2
,∠BF2A=120°.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=kx+2與橢圓交于不同的兩點M、N,且以MN為直徑的圓恰好過原點,求實數(shù)k的取值;
(3)動點P使得
F1P
F1F2
PF1
PF2
、
F2F
1
F2P
成公差小于零的等差數(shù)列,記θ為向量
PF1
PF2
的夾角,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1的兩焦點F1,F(xiàn)2與短軸兩端點B1,B2構(gòu)成∠B2F1B1為120°,面積為2
3
的菱形.
(1)求橢圓的方程;
(2)若直線l:y=kx+m與橢圓相交于M,N兩點(M,N不是左右頂點),且以MN為直徑的圓過橢圓右頂點A,求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案