解答:解:(I)∵f′(x)=3ax
2+2bx+c,f′(x)≥0的解集為{x|-2≤x≤1},
∴a<0,且方程f′(x)=3ax
2+2bx+c的兩根為-2,1.
∴
,即
,
f(x)=ax
3+
ax
2-6ax-1
∴f′(x)=3ax
2+3ax-6a=3a(x
2+x-2)=3a(x+2)(x-1),
令f′(x)>0得-2<x<1,令f′(x)<0得x<-2,或x>1,
∴f(x)在(-∞,-2),(1,+∞)上是減函數(shù),在(-2,1)上是增函數(shù),
∴函數(shù)f(x)在x=-2有極小值,在x=1有極大值,
∵函數(shù)f(x)的極大值為0,∴f(1)=0,
∴a+
a-6a-1=0,∴a=
;
(II)∵f′(x)+6a(x+1)≥0,∴3ax(x+3)≥0,
∵a<0,∴-3≤x≤0,即x∈[-3,0],
∵關(guān)于x的方程f(x)-ma+1=0有唯一實數(shù)解,
∴ax
3+
ax
2-6ax-ma=0(x∈[-3,0])有唯一實數(shù)解,
∴m=x
3+
x
2-6x(x∈[-3,0])有唯一實數(shù)解,
設(shè)u(x)=x
3+
x
2-6x(x∈[-3,0]),
∴u'(x)=3x
2+3x-6=3(x+2)(x-1)(x∈[-3,0]),
令u'(x)>0得x<-2,或x>1,
∴函數(shù)u(x)在[-3,-2]上是增函數(shù),在[-2,0]上是減函數(shù),
∴u
max=u(-2)=10,又u(-3)=
,u(0)=0,
∴當(dāng)m=10或m∈[0,
)時,直線y=m與函數(shù)u(x)(x∈[-3,0])的圖象有唯一公共點,
∴實數(shù)m的取值范圍為m=10或m∈[0,
).