(本小題滿分14分)已知四棱錐P—ABCD的三視圖如右圖所示,
其中正(主)視圖與側(左)視為直角三角形,俯視圖為正方形。
  (1)求四棱錐P—ABCD的體積;
  (2)若E是側棱上的動點。問:不論點E在PA的
任何位置上,是否都有
請證明你的結論?
(3)求二面角D—PA—B的余弦值。


不論點E在何位置,都有,

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)
如圖1所示,在平行六面體ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求證:頂點A1在底面ABCD上的射影O在∠BAD的平分線上;
(2)求這個平行六面體的體積。

圖1                                      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,F(xiàn)D垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900
(1)求證:BE//平面ADF;
(2)若矩形ABCD的一個邊AB="3," 另一邊BC=2,EF=2,求幾何體ABCDEF的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共13分)
如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=
BAD=90°,AB中點,FPC中點.
(I)求證:PEBC;
(II)求二面角CPEA的余弦值;
(III)若四棱錐PABCD的體積為4,求AF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

邊長為的正方形沿對角線折成的二面角,則的長為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P—ABCD的底面為矩形,PA=AD=1,PA⊥面ABCD,E是AB的中點,F(xiàn)為PC上一點,且EF//面PAD。

(I)證明:F為PC的中點;
(II)若二面角C—PD—E的平面角的余弦值為求直線ED與平面PCD所成的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,求這個多面體最長的一條棱的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)(1)已知為平面外的兩平行直線,且有,求證:。
(2)畫出下面實物的三視圖。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設m,n是兩條不同的直線,α,β,γ是三個不同的平面,有下列四個命題:
①若m?β,α⊥β,則m⊥α;②若α∥β,m?α,則m∥β;③若n⊥α,n⊥β,m⊥α,則m⊥β;④若α⊥γ,β⊥γ,m⊥α,則m⊥β.
其中正確命題的序號是(  )

A.①③B.①②C.③④D.②③

查看答案和解析>>

同步練習冊答案